
Compression
Packing data into a smaller space

Alwin Tareen



Compression Algorithms

I Digital data representations often involve tradeoffs
between quality and file size.

I Many storage formats use compression techniques that
store patterns of bits, rather than an exact representation
of the bits.

I Data compression is a set of steps for packing data into a
smaller space, while allowing for the original data to be
recreated.



Compression Algorithms

Compression is a two-way process
I A compression algorithm can be used to make a data file

smaller.
I However, the compression algorithm can be run in the

other direction, to decompress the file into its original
form(this only applies to lossless compression).



Compression Algorithms

The Compression Ratio
I A good measure for comparing the effectiveness of

compression algorithms is to compute the following
compression ratio:

(original file size − compressed file size)
original file size × 100

I For example, let the original file size = 240 bytes, and the
compressed file size = 177 bytes.

compression ratio = (240 − 177)
240 × 100

= 26.25%



Compression Algorithms

I Note that a better compression ratio does not guarantee
that one compression algorithm is more effective than
another.

I Some compression algorithms are tuned to a specific type
of data, for example: text, music, images, video, etc.



Lossless Compression(Zip, GIF, PNG)

I Lossless compression means that compression has
occurred with zero loss of information.

I Lossless compression packs data in such a way that the
compressed package can be decompressed, and the data
can be pulled out exactly the same as it went in.

I This is very important for computer programs and
archives, since even a small alteration in a computer
program’s file will make it completely unusable.



Lossy Compression(JPEG, MP3, MPEG)

I Lossy compression indicates that there has been some
data lost through the compression process.

I In other words, lossy compression throws out some of the
data, so that there’s less information to store.

I Lossy compressions work well with media files, such as
images or music, because the human eye and ear has
limits on the level of detail that it can detect.

I Lossy compression can never be undone, because the
original information can never be reconstructed, once it
has been lost.

I Therefore, you can’t go from a lossy-compressed image
back to the original image.



Run-length Encoding(Lossless)

I This is where you consider a piece of text, and indicate
repeated instances of a character.

I This type of compression works by reducing how much
wasted space exists in a piece of text.

I For example, if the text sample is: AAAAABBBB
I It can be compressed into the following: 5A4B
I This indicates that there are two runs of text: a run of

five A’s and another of four B’s.



Run-length Encoding(Lossless)

I The problem with run-length encoding is that it doesn’t
work with certain patterns of data.

I Consider the following text sample: ABBAABAAB
I This would be compressed as: 1A2B2A1B2A1B
I Note that the compressed version is longer than the

original sample of text.



Huffman Encoding(lossless)
I This is a type of frequency compression, that overcomes

the problems with run-length encoding.
I Each distinct value in a piece of data is given a code.
I Values that occur often are assigned shorter codes.
I Values that occur infrequently are assigned longer codes.

Huffman’s Algorithm
I Build a subtree using the two symbols with the lowest

probability.
I At each step, choose the two symbols or subtrees with

the lowest probability, and combine them to form a new
subtree.

I Continue in this manner until all the symbols in the set
have been exhausted.



Compression: End of Notes


