
Lists
A data structure consisting of a sequence of elements

Alwin Tareen



The Definition of a List

I A list is a sequence of several elements grouped together
under a single name.

I The values in a list can be of any data type(int, float, str,
bool) and they are called elements or items.

I Instead of writing a program with many variables, such as
nums0, nums1, nums2, etc., you can define a single list
called nums, and access its members using square bracket
notation: nums[0], nums[1], nums[2].

I More importantly, you can put other expressions and
variables inside the square brackets, such as nums[i] and
nums[i+1]. This allows us to deal with arbitrarily large
data sets, with just a small piece of code.



Creating a List

I There are several ways to create a new list. The simplest
way is to enclose several elements, separated by commas,
between square brackets:
fruit = ["strawberry", 58, 3.5]

I This creates a list called fruit of length 3.
I Each element of the list gets a number called its index.
I The initial element has index 0, the next element has

index 1, and so on.
I If we wish to access the elements in the list, we must use

square bracket notation as follows:
listname[indexnumber]



The Elements of a List

I Consider the following list:
fruit = ["strawberry", 58, 3.5]

I In this list, fruit[0] is a variable whose value is the
string "strawberry".

I Specifically, we have the following:
I fruit[0] → "strawberry"
I fruit[1] → 58
I fruit[2] → 3.5

I Unlike strings, lists are mutable, because you can change
the order of items in a list, or reassign an item in a list.



Assigning Elements in a List
I When the square bracket operator appears on the left side

of the assignment statement, it identifies the element of
the list that will be assigned.
fruit[1] = 65

I Like strings, if you attempt to access an element in the
list which does not exist, then Python will produce an
IndexError.
fruit[98]

I Like strings, list indexes can take on negative values,
leading to a wraparound effect.
fruit[-1]



List Operations
There are a number of operations that work the same for lists
as they do for strings.
The length of a list: len()
This determines the number of items in a list.

scores = [15, 361, 652, 19, 23, 39, 48, 75, 239]
print(len(scores))

The in operator
This tells you if a list contains a particular item.

drinks = ["tea", "juice", "soda"]
print("coffee" in drinks)
print("soda" in drinks)



List Slicing
I The slice operator also works on lists.

listname[firstindex:secondindex]

I If you omit the first index, the slice starts at the
beginning.

I If you omit the second index, the slice goes to the end.
I If you omit both indexes, the slice produces a clone of the

whole list.
I Since lists are mutable, you can use the slice operator on

the left side of the assignment statement, meaning it can
update several variables at once.
lunch = ["soup", "salad", "rice", "beans"]
lunch[1:3] = ["fries", "noodles"]



Looping(Traversing) across a List
I If you only need to read the elements in a list, and not

perform any updates or changes to them, then you should
use the following for loop:
snacks = ["chips", "cake", "banana"]
for item in snacks:

print(item)

I However, if you need to alter or update the elements in
the list, then you need to use another version of the for
loop, in which you can directly access the indexes:
primes = [11, 13, 17, 19, 23]
for i in range(len(primes)):

primes[i] = primes[i] * 2



The + and * Operators
The concatenation operator: +
The + operator adds one list to the end of the other.
food = ["chicken", "beef", "fish"]
supplies = ["soap", "detergent", "napkins"]
groceries = food + supplies

The multiplication operator: *
This repeats a list a given number of times.
result = [5, 8] * 3

The following command is particularly useful for quickly
creating a list of zeros:
dataset = [0] * 20



List Functions

I There are many built-in functions that can be used on
lists.

I The functions provide a nice shortcut, because they allow
you to process a list, without having to write a loop to do
the work.

I When calling these functions, the list is placed inside the
parentheses, as an argument.



List Functions

The max() function
This returns the maximum of the items in the list. It works
with data types which are comparable(ints, strings, etc.)
scores = [98.5, 86.2, 91.3, 89.1]
highest = max(scores)

The min() function
This returns the minimum of the items in the list. It works
with data types which are comparable(ints, strings, etc.)
temps = [18.2, 15.7, 14.3, 12.1]
coldest = min(temps)



List Functions

The sum() function
This returns the sum of the items in the list. It only works
with numerical data types(ints, floats, etc.)
prices = [19.9, 5.75, 8.25, 21.5]
total = sum(prices)



List Methods

I Python provides many built-in methods that operate on
lists.

I Note that there is a big difference in how list methods
operate, compared to string methods.

I Since strings are immutable, string methods can’t alter or
change a string.

I However, this is not the case with lists. List methods can
make changes and updates to a list, since lists are
mutable.

I Recall the syntax of a method call:
listname.methodname(arguments)



Enlarging a List

append(x)
This method adds a new element x to the end of the list.
sports = ["basketball", "football"]
sports.append("badminton")

extend(x)
This method takes a list x as an argument, and generates a
new list consisting of the original list, with x concatenated on
the end.
notes = ["do", "ray", "mi"]
melody = ["fa", "so", "la"]
notes.extend(melody)



Enlarging a List

insert(p, x)
This inserts element x at index position p of the list.
breakfast = ["eggs", "juice", "toast"]
breakfast.insert(1, "bacon")



Rearranging a List

sort()
This method arranges the elements of the list from low to high.
expenses = [27.5, 8.3, 19.7, 15.1, 24.2]
expenses.sort()
animals = ["camel", "bear", "goat", "dolphin"]
animals.sort()

reverse()
This reverses the order of the elements in the list.
meals = ["breakfast", "lunch", "dinner"]
meals.reverse()



Reducing a List

remove(x)
This method removes the first occurrence of element x from
the list.
snacks = ["pizza", "wings", "soda", "chips"]
snacks.remove("soda")

pop(x)
This method removes the element at index x, and returns its
value.
drinks = ["tea", "coffee", "cookie", "juice"]
pastry = drinks.pop(2)



Reducing a List
The following behaves in a similar manner to pop(x).
del listname[x]
This removes the element at index x, but it doesn’t return the
removed value.
vegetables = ["celery", "watermelon", "broccoli"]
del vegetables[1]

del listname[firstindex:lastindex]
This allows you to remove several elements at once, using
slicing.
chemicals = ["Na", "He", "Si", "Ca", "Au", "Pb"]
del chemicals[1:4]



Information about a List’s Elements

count(x)
This method returns the number of times that the element x
occurs in the list.
moves = ["up", "up", "down", "down", "up", "up"]
num = moves.count("up")

index(x)
This method returns the index location of the first occurrence
of element x.
flavour = ["cheese", "bbq", "salty", "bbq"]
position = flavour.index("bbq")



Lists and Strings

Since a string is a sequence of characters, and a list is a
sequence of elements, it makes sense that we can convert from
one form to the other.
list(x)
This is a string function. It takes in a string x as an argument,
and returns a list of single characters.
lunch = "pizza"
letters = list(lunch) # ["p", "i", "z", "z", "a"]



Lists and Strings
split()
This is a string method. It allows you to break a string into
individual words, as long as those words are separated by
spaces.
meal = "I like hamburgers"
words = meal.split()

split(x)
The parameter x represents a single text character. It allows
you to specify the delimiter used to divide up the string. It is
usually a comma.
prices = "93,82,47,49,32,87,54"
stock = prices.split(",")



Lists and Strings

join(x)
I This is a string method. It takes in a list of strings x as

an argument, and concatenates all of those string
elements together.

I join(x) must be called on a delimiter string character,
which gets placed between each of the string elements in
the result.
roster = ["alice", "bob", "carl", "dan"]
delimiter = ","
students = delimiter.join(roster)



Copying a List(Cloning)

I In order to make a copy of a list, you must clone it in the
following manner:
menu = ["rice", "noodles", "beef"]
specials = menu[:]



The range() Function

range(n)
This function generates a list of integers from 0 to n-1.

I range(5) → [0, 1, 2, 3, 4]

range(m, n)
This function generates a list of integers from m to n-1.

I range(2, 7) → [2, 3, 4, 5, 6]



The range() Function

range(m, n, step)
This function generates a list of integers from m to n-1, but
those integers are separated by gaps of size step.

I range(2, 15, 3) → [2, 5, 8, 11, 14]

If we want the list of integers to proceed backwards, then we
can specify a negative value for step.

I range(9, 2, -1) → [9, 8, 7, 6, 5, 4, 3]



Updating Elements while Looping

If we want to change or alter the elements in the list as we
proceed through the loop, then we need consider the index of
each element, i.
nums = [26, 87, 46, 54, 16, 28, 91, 41, 87, 26]
for i in range(len(nums)):

nums[i] = nums[i] * 2

Note that we cannot make changes to the elements when
using a regular for loop.



Lists: End of Notes


