
Strings
Representing text data in Python

Alwin Tareen



The Definition of a String

I A string is how a computer represents text data.
I In Python, the data type of a string is: str
I Generally, a string is a sequence of characters.
I Each character is represented in Python’s memory as an

ASCII value.
I For example, "H" is represented by the ASCII value 72.
I Strings must be enclosed by single quotation marks, or

double quotation marks.



Manipulating Strings as Sequences of Characters

I In order to manipulate a string, we need to be able to
access the individual characters that make up a string.

I In Python, a string can actually be regarded as an
array-like structure of elements. This allows us to access
the internal parts of the string.

I If we wish to extract single characters from a string, we
can use square bracket notation, along with a number
called an index: word[index]



String Indexes
I Programming languages usually have a convention

whereby the first element in a sequence is index 0.
Consider the following string:
fruit = "watermelon"

I The indexes of this string are as follows:

letter w a t e r m e l o n
index 0 1 2 3 4 5 6 7 8 9

I If we want to get the first letter of this string, we can use
index 0:
first = fruit[0]



String Indexes

I You can use any expression, including variables and
operators as an index. However, the index must be an
integer.

I In other words, it wouldn’t make any sense to have a
fractional value as an index: fruit[1.5]

I Another interesting aspect about indexes is that they can
take on negative values. This means that the letters in
the string have a wraparound effect, where the last letter
can be easily accessed.



String Indexes

I The string "watermelon" can be regarded as follows:

letter w a t e r m e l o n
index 0 1 2 3 4 5 6 7 8 9
index -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

I The last letter can be accessed with: fruit[-1]



The Quantity of Characters in a String

I We can use the built-in function len() to find out how
many characters there are in a string:

vegetable = "cauliflower"
quantity = len(vegetable)
print(quantity)

I Another way to access the last character in a string is to
provide an index where 1 is subtracted from the number
of characters:

last = vegetable[quantity-1]
print(last)



String Slicing
I Sometimes, we want to extract several characters from a

string.
I Slicing out some part of a string gives you a substring.
I For example, the strings "eat" and "ted" are substrings

of "repeated".
I We can use a variation of square bracket notation to

extract a substring.
I However, we need two indexes, separated by a colon.
I The first index corresponds to the first letter that you

want.
I The second index corresponds to the first letter that you

don’t want.
variablename[firstindex:lastindex]



String Slicing
I Consider the following string:

dessert = "chocolate"

I Let’s say that we wanted to extract the string "cola".
I Start with the index of the first letter that you want, 3.
I End with the index of the first letter that you don’t want,

7.

letter c h o c o l a t e
index 0 1 2 3 4 5 6 7 8

↑ ↑

drink = dessert[3:7]
print(drink)



String Slicing Shorthand

I Python allows you to use a special kind of shorthand
notation with string slicing.

I For example, consider the following string:
breakfast = "pineapple"

I Say that you wanted to extract the word "pine". You
could do the following:
tree = breakfast[0:4]

I However, if you wanted your slice to start from the
beginning of the string, you could omit the first index:
cone = breakfast[:4]



String Slicing Shorthand

I Similarly, if you wanted your slice to go all the way to the
end of the string, then you could omit the second index
as follows:
flavor = "strawberry"

I If you wanted to extract the word "berry", then you may
do the following:
snack = flavor[5:10]
food = flavor[5:]



String Slicing Shorthand

I What would happen if we performed a string slice in
which both the first and last indexes were omitted?

I This would result in a clone of the string.

icecream = flavor[:]
print(icecream)



String Concatenation with the + Operator

I The + operator takes on a different role when its
operands have the string data type.

I It joins the two strings, and returns the newly joined
string.

I In other words, it creates a new string that starts with the
first operand, and has the second operand immediately
after it.
candy = "bubble" + "gum"
print(candy)



String Duplication with the * Operator

I The * operator takes on a different role when one of its
operands is a string, and the other one is an integer.

I If a string is multiplied by an integer n, the result is a new
string which has n copies of the original string, one after
the other.
greetings = "hello" * 3
print(greetings)



Strings are Immutable

I Once a string has been created, it cannot be changed or
altered.

I In other words, you cannot do the following:
grocery = "Mango"
grocery[0] = "T" # error

I If you insist on performing this action, then the best that
you can do is to make a new string using part of the
original string.
grocery = "Mango"
dance = "T" + grocery[1:]
print(dance)



Looping across a String

I Python regards a string as a series of elements.
I Therefore, we can loop across a string just like any other

sequential data structure.
I The following is a traversal across a string using a for

loop:
fruit = "raspberry"
for letter in fruit:

print(letter)

I Each time through this for loop, the next character in
the string is assigned to the variable letter.

I The loop continues until there are no more characters left.



Counting Items in a String

I We can use the for loop construct to count how many
times a particular element is present in a string:
word = "banana"
count = 0
for letter in word:

if letter == "a":
count += 1

print(count)



The in Operator

I The in operator is used to determine if a substring
appears in a given string.

I It returns True if the substring is contained in the given
string, and False otherwise:
result = "a" in "banana"
print(result)

I The following is another example:
outcome = "raw" in "strawberry"
print(outcome)



The not in Operator

I You can combine the not operator with the in operator
to determine if a string does not contain something:
snacks = "pizza, wings, burgers"
if "chips" not in snacks:

print("You forgot the chips!")



Numerical ASCII Codes for Characters
I Every character symbol on your keyboard is actually

represented internally in the computer by a numerical
ASCII code.

I Generally, all modern computers use a standard set of
characters which are represented by the numbers between
32 and 255.

I The following are some characters and their respective
numerical codes:

Digits
Value Symbol

48 0
49 1
50 2
51 3

Uppercase
Value Symbol

65 A
66 B
67 C
68 D

Lowercase
Value Symbol

97 a
98 b
99 c
100 d



Converting between Letters and ASCII Codes
The ord() function

I You can convert a character into its corresponding
numerical ASCII code using the ord() function:
numcode = ord("P")
print(numcode)

The chr() function
I The chr() function performs the reverse operation: it

takes in a numerical ASCII code as input, and returns the
character corresponding to that code.
initial = chr(84)
print(initial)



String Comparison
I The comparison operators(==, <, >, etc.) work on strings.
I To check if two strings are equal, use the equality

operator: ==

if password == "basketball":
print("login successful")

I Since each character is associated with a particular
numerical ASCII code, we can reason the following:
digits < uppercase letters < lowercase letters

I This means that we can use the less than/greater than
signs to compare strings:
if "999" < "thousand":

print("access granted")



String Methods

I Calling a method is very similar to calling a function.
Methods can take arguments and return values.

I However, the syntax is different.
I You call a method by using dot notation as follows:

objectname.methodname(arguments)

I We are going to examine specific methods that can be
applied to strings.

I These are methods that return information about the
string, or return a new string that is a modified version of
the original.



String Methods: Letter Case

capitalize()
This returns a string in which the first character is upper case,
and the rest of the string is lower case.

lower()
This returns a string with every letter of the original in
lowercase.

upper()
This returns a string with every letter of the original in
uppercase.



String Methods: Characters

isalpha()
This returns True is every character of the string is a letter,
and False otherwise.

isdigit()
This returns True if every character of the string is a number,
and False otherwise.

strip()
This returns a string in which the whitespace from the
beginning and end of the original string is removed.



String Methods: Searching

find(x)
This returns the index of the location of x within the original
string. It returns -1 if x is not located.

find(x, start)
This returns the index of the location of x within the original
string. It begins its search from the index start, and returns
-1 if x is not located.



String Methods: Substrings

replace(x, y)
This returns a string with every occurrence of x replaced by y.

count(x)
This counts the number of occurrences of x in the original
string.

startswith(x)
This returns True if the original string begins with x, and
False otherwise.



Escape Sequences
I Sometimes, you want to include special characters, such

as the quotation mark, in your string.
I Python uses the backslash symbol, \ to accomplish this.

The newline character: \n
This character advances the cursor to the next line.

print("Hello\n\nworld")

The double quotation mark: \"
This inserts a double quotation mark into the string in the
following manner:

print("She said, \"Hello\" to everyone.")



Escape Sequences

The backslash character: \\
This displays the backslash character.

print("C:\\Documents\\hello.py")

The tab character: \t
This inserts a tab character into the string. It is useful for
producing tables.

print("Product\tWeight\tPrice")
print("kiwi\t0.15kg\t2.95")



Displaying Output with f-Strings

I f-strings are a new syntax in Python that allow you to
easily include variables in strings.

I The string must be prefixed with the letter f, and the
variables within the string must be enclosed with curly
braces: {}

amount = 5
food = "pizza"
result = f"I had {amount} servings of {food}."
print(result)



Strings: End of Notes


