Strings
Representing text data in Python

Alwin Tareen

The Definition of a String

\ 4

A string is how a computer represents text data.
In Python, the data type of a string is: str
Generally, a string is a sequence of characters.

Each character is represented in Python's memory as an
ASCIT value.

For example, "H" is represented by the ASCII value 72.

Strings must be enclosed by single quotation marks, or
double quotation marks.

Manipulating Strings as Sequences of Characters

» In order to manipulate a string, we need to be able to
access the individual characters that make up a string.

» In Python, a string can actually be regarded as an
array-like structure of elements. This allows us to access
the internal parts of the string.

» If we wish to extract single characters from a string, we
can use square bracket notation, along with a number
called an index: word[index]

String Indexes

» Programming languages usually have a convention
whereby the first element in a sequence is index 0.
Consider the following string:

fruit = "watermelon"

» The indexes of this string are as follows:

letter | w|a|t|e|r|m|le|l|o|n
index |0 1234 |5|6|7|8]9

» If we want to get the first letter of this string, we can use
index 0:

first = fruit[0]

String Indexes

» You can use any expression, including variables and
operators as an index. However, the index must be an
integer.

» In other words, it wouldn't make any sense to have a
fractional value as an index: fruit[1.5]

» Another interesting aspect about indexes is that they can
take on negative values. This means that the letters in
the string have a wraparound effect, where the last letter
can be easily accessed.

String Indexes

» The string "watermelon" can be regarded as follows:

letter
index
index

W t e r m e 1 o) n
0 1 2 3 4 5 6 7 8 9
-10| -9, -8|-7|-6|-5|-4|-3|-2]|-1

» The last letter can be accessed with: fruit[-1]

The Quantity of Characters in a String

» We can use the built-in function 1len() to find out how
many characters there are in a string:

vegetable = "cauliflower"
quantity = len(vegetable)
print(quantity)

» Another way to access the last character in a string is to
provide an index where 1 is subtracted from the number
of characters:

last = vegetable[quantity-1]
print (last)

String Slicing

>

Sometimes, we want to extract several characters from a
string.
Slicing out some part of a string gives you a substring.

For example, the strings "eat" and "ted" are substrings
of "repeated".

We can use a variation of square bracket notation to
extract a substring.

However, we need two indexes, separated by a colon.

The first index corresponds to the first letter that you
want.

The second index corresponds to the first letter that you
don’t want.

variablename[firstindex:lastindex]

String Slicing

» Consider the following string:

dessert = "chocolate"

» Let's say that we wanted to extract the string "cola".
» Start with the index of the first letter that you want, 3.
» End with the index of the first letter that you don't want,

7.
letter [c |h|o|clo|l]la|t]e
index |0|1(2|3|4|5|6|7]|8
))

drink = dessert[3:7]
print (drink)

String Slicing Shorthand

» Python allows you to use a special kind of shorthand
notation with string slicing.

» For example, consider the following string:

breakfast = "pineapple"

» Say that you wanted to extract the word "pine". You
could do the following:

tree = breakfast[0:4]

» However, if you wanted your slice to start from the
beginning of the string, you could omit the first index:

cone = breakfastl[:4]

String Slicing Shorthand

» Similarly, if you wanted your slice to go all the way to the
end of the string, then you could omit the second index
as follows:

flavor = "strawberry"

» If you wanted to extract the word "berry", then you may
do the following:

snack = flavor[5:10]
food = flavor[5:]

String Slicing Shorthand

» What would happen if we performed a string slice in
which both the first and last indexes were omitted?

» This would result in a clone of the string.

icecream = flavor[:]
print(icecream)

String Concatenation with the + Operator

» The + operator takes on a different role when its
operands have the string data type.

» It joins the two strings, and returns the newly joined
string.

» In other words, it creates a new string that starts with the
first operand, and has the second operand immediately
after it.

candy = "bubble" + "gum"
print (candy)

String Duplication with the * Operator

» The * operator takes on a different role when one of its
operands is a string, and the other one is an integer.

» If a string is multiplied by an integer n, the result is a new
string which has n copies of the original string, one after
the other.

greetings = "hello" * 3
print(greetings)

Strings are Immutable

» Once a string has been created, it cannot be changed or
altered.

» In other words, you cannot do the following:

grocery = "Mango"
grocery[0] = "T" # error

» If you insist on performing this action, then the best that
you can do is to make a new string using part of the
original string.

grocery = "Mango"
dance = "T" + grocery[1:]
print(dance)

Looping across a String

» Python regards a string as a series of elements.

» Therefore, we can loop across a string just like any other
sequential data structure.

» The following is a traversal across a string using a for
loop:

fruit = "raspberry"
for letter in fruit:
print(letter)

» Each time through this for loop, the next character in
the string is assigned to the variable letter.

» The loop continues until there are no more characters left.

Counting Items in a String

» We can use the for loop construct to count how many
times a particular element is present in a string:

word = "banana"

count = 0

for letter in word:
if letter == "a":

count += 1
print (count)

The in Operator

» The in operator is used to determine if a substring
appears in a given string.

» It returns True if the substring is contained in the given
string, and False otherwise:

result = "a" in "banana"
print(result)

» The following is another example:

outcome = "raw" in "strawberry"
print (outcome)

The not in Operator

» You can combine the not operator with the in operator
to determine if a string does not contain something:

snacks = "pizza, wings, burgers"
if "chips" not in snacks:
print("You forgot the chips!")

Numerical ASCII Codes for Characters

» Every character symbol on your keyboard is actually
represented internally in the computer by a numerical

ASCII code.

» Generally, all modern computers use a standard set of
characters which are represented by the numbers between

32 and 255.

» The following are some characters and their respective

numerical codes:

Digits Uppercase Lowercase
Value Symbol Value Symbol Value Symbol
48 0 65 A 97 a
49 1 66 B] b
50 2 67 C 99 c
51 K] 68 D 100 d

Converting between Letters and ASCII Codes
The ord() function

» You can convert a character into its corresponding
numerical ASCII code using the ord () function:

numcode = ord("P")
print (numcode)

The chr () function

» The chr() function performs the reverse operation: it
takes in a numerical ASCII code as input, and returns the
character corresponding to that code.

initial = chr(84)
print(initial)

String Comparison

» The comparison operators(==, <, >, etc.) work on strings.

» To check if two strings are equal, use the equality
operator: ==

if password == "basketball":
print("login successful")

» Since each character is associated with a particular
numerical ASCII code, we can reason the following:

digits < uppercase letters < lowercase letters

» This means that we can use the less than/greater than
signs to compare strings:

if "999" < "thousand":
print("access granted")

String Methods

» Calling a method is very similar to calling a function.
Methods can take arguments and return values.

» However, the syntax is different.
» You call a method by using dot notation as follows:

objectname.methodname (arguments)

» We are going to examine specific methods that can be
applied to strings.

» These are methods that return information about the
string, or return a new string that is a modified version of
the original.

String Methods: Letter Case

capitalize()
This returns a string in which the first character is upper case,
and the rest of the string is lower case.

lower ()
This returns a string with every letter of the original in
lowercase.

upper ()
This returns a string with every letter of the original in
uppercase.

String Methods: Characters

isalpha()

This returns True is every character of the string is a letter,
and False otherwise.

isdigit ()
This returns True if every character of the string is a number,
and False otherwise.

strip()

This returns a string in which the whitespace from the
beginning and end of the original string is removed.

String Methods: Searching

find (%)
This returns the index of the location of x within the original
string. It returns -1 if x is not located.

find(x, start)
This returns the index of the location of x within the original
string. It begins its search from the index start, and returns
-1 if x is not located.

String Methods: Substrings

replace(x, y)
This returns a string with every occurrence of x replaced by y.

count (x)
This counts the number of occurrences of x in the original
string.

startswith(x)
This returns True if the original string begins with %, and
False otherwise.

Escape Sequences

» Sometimes, you want to include special characters, such
as the quotation mark, in your string.

» Python uses the backslash symbol, \ to accomplish this.

The newline character: \n
This character advances the cursor to the next line.

print ("Hello\n\nworld")

The double quotation mark: \"

This inserts a double quotation mark into the string in the
following manner:

print ("She said, \"Hello\" to everyone.")

Escape Sequences

The backslash character: \\
This displays the backslash character.

print ("C:\\Documents\\hello.py")

The tab character: \t

This inserts a tab character into the string. It is useful for
producing tables.

print ("Product\tWeight\tPrice")
print ("kiwi\t0.15kg\t2.95")

Displaying Output with f-Strings

» f-strings are a new syntax in Python that allow you to
easily include variables in strings.

» The string must be prefixed with the letter £, and the
variables within the string must be enclosed with curly
braces: {}

amount = 5

food = "pizza"

result = f"I had {amount} servings of {food}."
print(result)

Strings: End of Notes

