
Iteration
Repeatedly executing a code block of statements

Alwin Tareen



What are Loops(Iteration)?

I Loops are also known as repetition or iteration.
I Loops allow the computer to do the same thing(or similar

things) over and over.
I In other words, loops are a way for a program to execute

the same code multiple times.
I Loops are an effective design tool, because if you need to

change the code that gets repeated, you only need to
change it once.



The while Loop

The indefinite loop
I A while loop repeats a section of code, over and over

again, as long as some boolean condition is True.
I while loops are particularly useful when you don’t know

in advance how many times a loop should run.

The structure of a while loop
I It consists of the keyword while, followed by a boolean

condition, then a colon.
I The body of the while loop is an indented code block of

statements.



The while Loop

A while loop’s code structure
while condition:

code block of statements

The flow of execution of a while loop
I A while loop first checks the condition it is given,

yielding True or False.
I If the condition evaluates as True, then it executes the

code block of statements, and repeats execution from the
condition check.

I If the condition evaluates as False, then the while loop
is immediately exited.



Flowchart representation of a while loop



The Counter-controlled Loop

Looping a given number of times
I A counter-controlled loop is one that repeats a

predetermined number of times.
I The condition in this loop is controlled by a counter

variable.
I The counter variable keeps track of the number of times

that the loop is executed.

count = 0
while count < 5:

print(count)
count += 1



The Infinite Loop

Beware the endless loop
I If a while loop is given a condition that is always True,

then the loop will never stop running.
I A common mistake is when a programmer forgets to

increment the counter variable within the body of the
while loop.

I Since the boolean condition will never be False, the loop
will continue running indefinitely.

count = 0
while count < 10:

print(count)



Summing a Sequence of Integers with while

The following Python program uses a while statement to
sum the following sequence of integers:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

count = 1
total = 0
while count <= 10:

total += count
count += 1

print(total)



Incrementing by a Different Amount

I A counter variable can be incremented by a value other
than one.

I For example, the following counter is incremented by 10,
each time through the loop.

count = 0
while count < 100:

print(count)
count += 10



The for Loop

The definite loop
I A for loop repeats a section of code, for as many times

as there are items in a corresponding set of elements.
I In other words, since a for loop passes through a known

set of items, there is a definite limit as to how many
iterations it can run through.

I Usually, we use a data structure known as a list to
represent the set of items.

nums = [19, 384, 485, 714, 55, 61, 856, 329, 28]



The Structure of a for Loop

I The first line consists of the keyword for, followed by a
variable name(usually item), then the keyword in, then a
series of elements(usually a list), followed by a colon.

I The next line is where the body of the for loop begins. It
consists of an indented code block of statements which
we want to be repeated, over and over.

A for loop’s code structure
for item in elements:

code block of statements



The Flow of Execution of a for Loop

I Initially, the variable name(usually item) is set to the first
element in the group.

I Then the statements in the code block are run.
I Afterwards, the for loop checks to see if there are any

more elements in the group. If not, then the for loop
exits.

I Otherwise, the variable item is set to the next element in
the group, and the execution repeats.



Flowchart representation of a for loop



Typical Uses of a for Loop
Using a for loop as a counter-controlled loop
for count in [0, 1, 2, 3, 4]:

print(count)

Summing a sequence of integers using a for loop
I The following integers are added together:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

total = 0
for item in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

total += item
print(total)



The break Statement
Immediately exiting a loop

I Sometimes, you don’t know that it’s time to end a loop,
until you get halfway through the body.

I The break statement is like an emergency escape
command for a while loop or a for loop.

I break causes an immediate jump to the statements after
the end of the loop body.

I For example, suppose you want to exit if 8 appears:

import random
while True:

num = random.randint(1, 10)
if num == 8:

break



The continue Statement
I Sometimes, you are in the middle of a code block of

statements in a loop, and you want to pass over the rest
of the statements, and resume execution from the next
iteration.

I In such a case, you can use the continue statement to
skip to the next iteration, without finishing the rest of the
statements in the code block.

I For example, the following program won’t display the
number 4:

for num in [0, 1, 2, 3, 4, 5, 6, 7, 8]:
if num == 4:

continue
print(num)



Iteration: End of Notes


