lteration

Repeatedly executing a code block of statements

Alwin Tareen



What

are Loops(Iteration)?

Loops are also known as repetition or iteration.

Loops allow the computer to do the same thing(or similar
things) over and over.

In other words, loops are a way for a program to execute
the same code multiple times.

Loops are an effective design tool, because if you need to
change the code that gets repeated, you only need to
change it once.



The while Loop

The indefinite loop

» A while loop repeats a section of code, over and over
again, as long as some boolean condition is True.

» while loops are particularly useful when you don't know
in advance how many times a loop should run.

The structure of a while loop
» It consists of the keyword while, followed by a boolean
condition, then a colon.

» The body of the while loop is an indented code block of
statements.



The while Loop

A while loop’s code structure

while condition:
code block of statements

The flow of execution of a while loop

» A while loop first checks the condition it is given,
yielding True or False.

» If the condition evaluates as True, then it executes the
code block of statements, and repeats execution from the
condition check.

» If the condition evaluates as False, then the while loop
is immediately exited.



Flowchart representation of a while loop

End While




The Counter-controlled Loop

Looping a given number of times

» A counter-controlled loop is one that repeats a
predetermined number of times.

» The condition in this loop is controlled by a counter
variable.

» The counter variable keeps track of the number of times
that the loop is executed.

count = O

while count < 5:
print (count)
count += 1




The Infinite Loop

Beware the endless loop

» If a while loop is given a condition that is always True,
then the loop will never stop running.

» A common mistake is when a programmer forgets to
increment the counter variable within the body of the
while loop.

» Since the boolean condition will never be False, the loop
will continue running indefinitely

count = 0
while count < 10:
print (count)




Summing a Sequence of Integers with while

The following Python program uses a while statement to
sum the following sequence of integers:

1+2+3+4+5+6+7+8+9+10

count 1

total 0

while count <= 10:
total += count
count += 1

print(total)




Incrementing by a Different Amount

» A counter variable can be incremented by a value other
than one.

» For example, the following counter is incremented by 10,
each time through the loop.

count = 0

while count < 100:
print (count)
count += 10




The for Loop

The definite loop

» A for loop repeats a section of code, for as many times
as there are items in a corresponding set of elements.

» In other words, since a for loop passes through a known
set of items, there is a definite limit as to how many
iterations it can run through.

» Usually, we use a data structure known as a list to
represent the set of items.

nums = [19, 384, 485, 714, 55, 61, 856, 329, 28]




The Structure of a for Loop

» The first line consists of the keyword for, followed by a
variable name(usually item), then the keyword in, then a
series of elements(usually a list), followed by a colon.

» The next line is where the body of the for loop begins. It
consists of an indented code block of statements which
we want to be repeated, over and over.

A for loop's code structure

for item in elements:
code block of statements




The Flow of Execution of a for Loop

» Initially, the variable name(usually item) is set to the first
element in the group.

» Then the statements in the code block are run.

» Afterwards, the for loop checks to see if there are any

more elements in the group. If not, then the for loop
exits.

» Otherwise, the variable item is set to the next element in
the group, and the execution repeats.



Flowchart representation of a for loop

for loop
l Iterating in sequence

Condition
Last item in
sequence?

false[

Body of for
Execute statements

exit for loop




Typical Uses of a for Loop

Using a for loop as a counter-controlled loop

for count in [0, 1, 2, 3, 4]:
print (count)

Summing a sequence of integers using a for loop

» The following integers are added together:

1+2+3+44+5+6+7+8+9+10

total = 0

for item in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
total += item

print(total)




The break Statement
Immediately exiting a loop

» Sometimes, you don't know that it's time to end a loop,
until you get halfway through the body.

» The break statement is like an emergency escape
command for a while loop or a for loop.

» break causes an immediate jump to the statements after
the end of the loop body.

» For example, suppose you want to exit if 8 appears:

import random
while True:
num = random.randint(1l, 10)
if num ==
break




The continue Statement

Sometimes, you are in the middle of a code block of
statements in a loop, and you want to pass over the rest
of the statements, and resume execution from the next
iteration.

In such a case, you can use the continue statement to
skip to the next iteration, without finishing the rest of the
statements in the code block.

For example, the following program won't display the
number 4:

for

num in [0, 1, 2, 3, 4, 5, 6, 7, 8]:
if num ==

continue
print (num)




lteration: End of Notes



