Functions

Defining a sequence of statements for code reuse

Alwin Tareen



What

is a Function?

A function is a named sequence of statements that
performs a computation.

def displaygreetings(Q):
print("hello")

When calling a function, you type the function’'s name,
followed by parentheses, which can contain zero or more
arguments.

An argument is an input to the function.

Then, the function performs some action, depending on
its arguments.

When there are muliple arguments to a function, you
separate them with commas.




Built-in Functions

» There are a number of built-in functions that are included
in Python, which are designed to solve common problems.
» These built-in functions include the following:
print ()
max ()
min()
len()
» You should consider the names of these built-in functions
as reserved keywords. Do not use them as variable names.



The max() Function

The max () function will return the largest value in a collection
of items.

» max (42, 17) — 42
» max(3.59, 8.24, 9.71, 6.53) — 9.71
» max("abcdef") — "f"



The min() Function

The min() function will return the smallest value in a
collection of items.

» min(26, 17, 57, 35) — 18

» min(9.38, 4.75, 3.49, 8.75, 7.41) — 3.49

» min("abcdef") — "a"



The 1len() Function

The 1en() function returns the quantity of items in the
collection. If the argument is a string, then len() returns the
number of letters in the string.

» len("pepperoni") — 9



Type Conversion Functions

» Python provides built-in functions that convert values
from one data type to another.
» These built-in functions include the following:
int O
float ()
str()



The int () Function

The int () function takes any value and converts it to an
integer. If the given argument can’t be converted, then int ()
exits with a Traceback(in other words, an error).

» int("32") — 32

» int("hello") — Traceback

int () can convert floating-point values to integers. It retains
the whole number part, and discards the fractional part.

» int(3.9999) — 3
» int(-2.3) — -2



The float () Function

The float () function converts integers and strings to
floating-point numbers.

» float("32") — 32.0
» float("3.14159") — 3.14159



The str() Function

The str() function converts integers and floating-point
numbers to strings.

» str(32) — "32"
» str(3.14159) — "3.14159"

str () is useful when displaying numerical output to the user,
because the concatenation operator only joins strings:

print("pi is: " + str(3.14))




Random Numbers

» The random module provides functions that generate
pseudorandom numbers.

» To use the random module, you must include the
following statement at the top of your program:

import random




A Note about Modules

» Python includes such a large number of functions, that
they are organized into special groups called modules.

» Before using any functions from a module, you must
import the module as demonstrated here:

import modulename

» To use a function from a module, you must type the
module name, followed by a period, followed by the name
of the function you want. For example:

num = random.randint(3, 8)




The random() Function

» random() returns a random floating-point number in the
range: 0.0 to 0.99999999

» In mathematical notation, this is expressed as: [0.0,1.0)

import random
num = random.random()
print (num)




The randint(low, high) Function

» randint(low, high) takes in two parameters: low and
high.

» Then, it returns a random integer within the inclusive
range of those two values.

» In mathematical notation, this is: [Low, high]

import random
num = random.randint(1l, 6)
print (num)




The choice() Function

» choice() selects an element at random from a collection
of items.

» Usually, the collection is a list data structure. Lists will
be covered in a later section.

» Note that in the following example, each of the numbers
has a 25% chance of being selected.

import random
num = random.choice([18, 23, 9, 35])
print (num)




Math Functions

Python has a math module that provides most of the familiar
mathematical functions that you would see on a calculator.

import math




Math Functions

The following are some of the mathematical functions that are
included in the math module.

» sqrt(x): This computes the square root of x.
» exp(x): This computes the exponential function, e*.
» log(x): This computes the natural log function, In x

» logl10(x): This computes the logarithm base-10
function, log;, x

» sin(x), cos(x), tan(x): Computes the trigonometrical
functions. The angle x must be expressed in radians, not
degrees.

» Note that the mathematical constant 7 is included:
math.pi



Creating Customized Functions

» The ability to define your own functions is a fundamental
programming concept.

» Functions allow your program to become shorter, well
organized, easier to read, easier to debug, and more
reusable.

» A function definition specifies the name of a new
function, and the sequence of statements that execute
when the function is called.

» Once we define a function, we can reuse it over and over
in our program.



The Structure of a Function Definition

» The first line of a function definition is called the header,
and the rest is called the body.

» The header consists of the keyword def, then the
function name, then parentheses, which may contain zero
or more parameters.

» If there are multiple parameters in a function definition,
then they must be separated by commas.

» The rules for naming functions are the same as the rules
for naming variables(no punctuation, don't start with a
number, etc.).

» There must be a colon at the end of the header.



The Structure of a Function Definition

» The following is an example of a function which has no
parameters, and does not return a value.

def displaygreeting():
print("hello world")

» Once you have defined a function, you can call it from
anywhere in your program. You can even call a function
from within another function.

displaygreeting()

» Note that the function definition must come before the
function call in your program.



Functions which Return a Value

» Some functions perform actions and yield results. These
require the use of the keyword return.

» When a function reaches the following line in its body:

return <value>

» The function stops executing, and returns <value> as its
output.
» The body of a function may contain several return

statements, but only the first one executed causes the
function to exit.

def calculatesquare(side):
return sidexx*2




Flow of Execution

» The Python interpreter begins execution at the first
statement of the program.

» Statements are executed one line at a time, in order, from
top to bottom.

» Now that we have function definitions in our program, we
have to keep in mind that the statements inside a
function are not executed until the function is called.



Flow of Execution

» In a program with user-defined functions, execution will
begin at the first statement which is outside any function.

» If a function call is made, the flow jumps to the body of
the function, executes all statements there, and then
comes back to pick up where it left off.

» Therefore, when reading a program, execution does not
always proceed from top to bottom. Sometimes, it makes
more sense to follow the flow of execution of the program.



Parameters and Arguments

» When a function is called, sometimes we must supply
input values to that function, in between the parentheses.
These are called arguments.

» However, when we define a function, we can have
elements in between the parentheses called parameters.
» These parameters are actually variables which are local in

scope to the function. This means that they cannot be
used outside of that function.



Parameters and Arguments

def displaytwice(word):
print (word)
print (word)

» The parameter word can only be used inside the
displaytwice function.

» The following is the function call:

displaytwice("hello")

» The argument "hello" is bound to the parameter
variable word.

» Wherever word appears in the function, the value
"hello" will be substituted.



Functions: End of Notes



