
Functions
Defining a sequence of statements for code reuse

Alwin Tareen

What is a Function?

I A function is a named sequence of statements that
performs a computation.
def displaygreetings():

print("hello")

I When calling a function, you type the function’s name,
followed by parentheses, which can contain zero or more
arguments.

I An argument is an input to the function.
I Then, the function performs some action, depending on

its arguments.
I When there are muliple arguments to a function, you

separate them with commas.

Built-in Functions

I There are a number of built-in functions that are included
in Python, which are designed to solve common problems.

I These built-in functions include the following:
I print()
I max()
I min()
I len()

I You should consider the names of these built-in functions
as reserved keywords. Do not use them as variable names.

The max() Function

The max() function will return the largest value in a collection
of items.

I max(42, 17) → 42
I max(3.59, 8.24, 9.71, 6.53) → 9.71
I max("abcdef") → "f"

The min() Function

The min() function will return the smallest value in a
collection of items.

I min(26, 17, 57, 35) → 18
I min(9.38, 4.75, 3.49, 8.75, 7.41) → 3.49
I min("abcdef") → "a"

The len() Function

The len() function returns the quantity of items in the
collection. If the argument is a string, then len() returns the
number of letters in the string.

I len("pepperoni") → 9

Type Conversion Functions

I Python provides built-in functions that convert values
from one data type to another.

I These built-in functions include the following:
I int()
I float()
I str()

The int() Function

The int() function takes any value and converts it to an
integer. If the given argument can’t be converted, then int()
exits with a Traceback(in other words, an error).

I int("32") → 32
I int("hello") → Traceback

int() can convert floating-point values to integers. It retains
the whole number part, and discards the fractional part.

I int(3.9999) → 3
I int(-2.3) → -2

The float() Function

The float() function converts integers and strings to
floating-point numbers.

I float("32") → 32.0
I float("3.14159") → 3.14159

The str() Function

The str() function converts integers and floating-point
numbers to strings.

I str(32) → "32"
I str(3.14159) → "3.14159"

str() is useful when displaying numerical output to the user,
because the concatenation operator only joins strings:

print("pi is: " + str(3.14))

Random Numbers

I The random module provides functions that generate
pseudorandom numbers.

I To use the random module, you must include the
following statement at the top of your program:

import random

A Note about Modules

I Python includes such a large number of functions, that
they are organized into special groups called modules.

I Before using any functions from a module, you must
import the module as demonstrated here:
import modulename

I To use a function from a module, you must type the
module name, followed by a period, followed by the name
of the function you want. For example:
num = random.randint(3, 8)

The random() Function

I random() returns a random floating-point number in the
range: 0.0 to 0.99999999

I In mathematical notation, this is expressed as: [0.0, 1.0)

import random
num = random.random()
print(num)

The randint(low, high) Function

I randint(low, high) takes in two parameters: low and
high.

I Then, it returns a random integer within the inclusive
range of those two values.

I In mathematical notation, this is: [low, high]

import random
num = random.randint(1, 6)
print(num)

The choice() Function

I choice() selects an element at random from a collection
of items.

I Usually, the collection is a list data structure. Lists will
be covered in a later section.

I Note that in the following example, each of the numbers
has a 25% chance of being selected.

import random
num = random.choice([18, 23, 9, 35])
print(num)

Math Functions

Python has a math module that provides most of the familiar
mathematical functions that you would see on a calculator.

import math

Math Functions

The following are some of the mathematical functions that are
included in the math module.

I sqrt(x): This computes the square root of x.
I exp(x): This computes the exponential function, ex .
I log(x): This computes the natural log function, ln x
I log10(x): This computes the logarithm base-10

function, log10 x
I sin(x), cos(x), tan(x): Computes the trigonometrical

functions. The angle x must be expressed in radians, not
degrees.

I Note that the mathematical constant π is included:
math.pi

Creating Customized Functions

I The ability to define your own functions is a fundamental
programming concept.

I Functions allow your program to become shorter, well
organized, easier to read, easier to debug, and more
reusable.

I A function definition specifies the name of a new
function, and the sequence of statements that execute
when the function is called.

I Once we define a function, we can reuse it over and over
in our program.

The Structure of a Function Definition

I The first line of a function definition is called the header,
and the rest is called the body.

I The header consists of the keyword def, then the
function name, then parentheses, which may contain zero
or more parameters.

I If there are multiple parameters in a function definition,
then they must be separated by commas.

I The rules for naming functions are the same as the rules
for naming variables(no punctuation, don’t start with a
number, etc.).

I There must be a colon at the end of the header.

The Structure of a Function Definition

I The following is an example of a function which has no
parameters, and does not return a value.

def displaygreeting():
print("hello world")

I Once you have defined a function, you can call it from
anywhere in your program. You can even call a function
from within another function.

displaygreeting()

I Note that the function definition must come before the
function call in your program.

Functions which Return a Value

I Some functions perform actions and yield results. These
require the use of the keyword return.

I When a function reaches the following line in its body:
return <value>

I The function stops executing, and returns <value> as its
output.

I The body of a function may contain several return
statements, but only the first one executed causes the
function to exit.
def calculatesquare(side):

return side**2

Flow of Execution

I The Python interpreter begins execution at the first
statement of the program.

I Statements are executed one line at a time, in order, from
top to bottom.

I Now that we have function definitions in our program, we
have to keep in mind that the statements inside a
function are not executed until the function is called.

Flow of Execution

I In a program with user-defined functions, execution will
begin at the first statement which is outside any function.

I If a function call is made, the flow jumps to the body of
the function, executes all statements there, and then
comes back to pick up where it left off.

I Therefore, when reading a program, execution does not
always proceed from top to bottom. Sometimes, it makes
more sense to follow the flow of execution of the program.

Parameters and Arguments

I When a function is called, sometimes we must supply
input values to that function, in between the parentheses.
These are called arguments.

I However, when we define a function, we can have
elements in between the parentheses called parameters.

I These parameters are actually variables which are local in
scope to the function. This means that they cannot be
used outside of that function.

Parameters and Arguments

def displaytwice(word):
print(word)
print(word)

I The parameter word can only be used inside the
displaytwice function.

I The following is the function call:
displaytwice("hello")

I The argument "hello" is bound to the parameter
variable word.

I Wherever word appears in the function, the value
"hello" will be substituted.

Functions: End of Notes

