
Conditional Execution
Decision making with if-else statements

Alwin Tareen



Boolean Expressions

The Boolean Data Type
I A boolean expression is an expression that is evaluated

to either True or False.
I In Python, the boolean data type can only take the

values True or False.
I Note that True or False must begin with a capital

letter. These are special values which are not strings.
I Python specifies this data type as: bool



Comparison Operators
I The following comparison operators compare two

numbers, and give back a boolean value.

Comparison Operator Description
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
!= not equal to

I Note that == denotes logical equality, while = is the
assignment operator.

I Confusing these two items is a common source of errors.



Logical Operators

I There are three logical operators in Python.

Rank Operator Example Result
1 not not a True if a is False, and

False if a is True.
2 and a and b True if a and b are both

True, and False otherwise.
3 or a or b True if either a or b are

True, and False otherwise.

I Logical operators must be evaluated in the following order
of precedence: not, and, or.



Truth Tables

I A logical operation can be described by a truth table
that lists all of the possible combinations of values for the
input variables involved in an expression.

I The following is a two-valued truth table. It shows the
outputs for the and, or operators.

logical and logical or
a b a and b a or b

False False False False
False True False True
True False False True
True True True True



The not Operator

I The not operator gives the logical complement of a
boolean value.

I It does not alter the variable upon which it acts.
I The following is the truth table for the not operator:

logical not
a not a

False True
True False

if (not lights):
print("The room is dark.")



The and Operator

I The result of a logical and operation is True if both
operands are True, but False otherwise.

if (chips > 0 and soda > 0):
print("You have snacks.")



The or Operator

I The result of a logical or operation is True if one or the
other or both of the operands are True, but False
otherwise.

if (money > 1000 or creditcard == True):
print("You can buy an iPhone.")



The if Statement

Conditional Execution
Conditional statements give us the ability to check a condition,
and change the behaviour of the program accordingly.

The if Statement
I This allows us to perform actions only when certian

conditions are met, and to skip the block of code
otherwise.

I The structure of the if statement consists of the
following:

if condition:
code block of statements



The if Statement

I The first line has the keyword if, then a condition
which must be True or False expression, then a colon.

I Then, there is the body of the if statement, which
consists of one or more indented lines.

I According to good programming practice, there should be
4 spaces of indent.
if age >= 18:

print("You can drive.")

I If the logical condition is True, then the indented block
of code gets executed. If the logical condition is False,
then the indented block of code is skipped.



Flowchart of the if Statement



The if-else Statement

I Often, you want to test some condition, and take either
one action or another action, depending upon whether
the condition is True or False.

I With an if-else statement, there are two possibilities,
and the condition determines which one is executed.

I The structure of the if-else statement consists of the
following:

if condition:
code block if the condition is True

else:
code block if the condition is False



Flowchart of the if-else Statement
I Since the condition must be either True or False,

exactly one of the possible branches must be executed.



The if-elif-else Statement

I Sometimes, there are more than two possibilities which
can be selected, so we need more than two logical
branches.

I We can use an if-elif-else statement, which allows us
to check several conditions in a row.

I The keyword elif is an abbreviation for else if, since
it is the same as putting an if statement inside an else
block.

I You can combine any number of elif statements in your
structure.

I The else statement at the end is optional. If you include
an else statement, then it must come at the very end of
the structure.



The if-elif-else Statement

if first_condition:
code block if first_condition is True

elif second_condition:
code block if second_condition is True

elif third_condition:
code block if third_condition is True

else:
code block if all other conditions are False



Flowchart of the if-elif-else Statement



Short-Circuit Evaluation
I The and and or operators are short-circuited.
I If the left operand is enough to decide the boolean result

of the operation, then the right operand is not evaluated.

and
If the left operand is False, then the result of the entire
expression will be False, no matter what the right operand is.

sh = False and (False and (True or False) or True)

or
If the left operand is True, then the result of the entire
expression will be True, no matter what the right operand is.

cr = True or (False and (True or False) or True)



Conditional Execution: End of Notes


