
Python Syntax
Data Types, Variables, and Operators

Alwin Tareen

Data Types
Integer data type: int
This is any whole number(positive or negative) that does not
have a decimal component.

average = 9
print(average)
print(type(average))

Float data type: float
This is any number(positive or negative) which has a decimal
component.

radius = 28.975
print(radius)
print(type(radius))

Data Types

String data type: str
I This is any sequence of text characters.
I A string must be enclosed by quotation marks.
I You are allowed to use either the double quotation or

single quotation to enclose your string.

greetings = "hello"
departure = ‘goodbye’
print(greetings)
print(type(greetings))

I Note: in this course, we will use the double quotation
marks with our strings.

Data Types

Boolean data type: bool
I This data type can only have a True or False value.
I Note that the T in True must be uppercase.
I Also, the F in False must be uppercase as well.

lightson = True
print(lightson)
print(type(lightson))

Some Commonly Used Functions

The print() function
This displays to the output whatever value is between the
parentheses.

print("hello")
print(58)
print(28.975)
print(True)

The type() function
This indicates the data type of whatever item is between the
parentheses.

print(type("pizza"))

Variable Declaration

What is a variable?
A variable is a named piece of memory that you can use to
store information in a Python program.

total = 36

I The name of the variable is: total
I The data that is stored in the variable is: 36
I The data type of total is: int

Note that we did not have to explicitly declare the data type
of the variable total. Python can infer this information
automatically.

Variable Naming Rules
1. A variable name must begin with a letter(not a number or

symbol).
total = 58 # Legal
2scoops = 31 # Not legal

2. The variable name must be a sequence of letters or digits,
with no spaces in between.

3. Symbols(@, #, $, %, &, etc.) cannot be used in a
variable name, with the exception of the underscore
character: _

good4you = 23 # Legal
work@home = 95 # Not legal

4. The length of a variable name is unlimited.

Reserved Python Keywords

I You cannot use a reserved Python keyword as a variable
name.

I Python reserves these keywords to perform common
programming functionality, such as loops or conditionals.

I The following is a comprehensive list of Python’s
reserved keywords.

Statements & the Assignment Operator
Statements

I A statement is a unit of code that the Python
interpreter can execute.

I A script usually consists of a sequence of statements.
I If there is more than one statement, then the results

appear one at a time, as the statements execute.

The assignment operator: =
I The equals sign is used to assign a value to a variable.
I Be careful not to confuse it with the mathematical

equals sign, which is used in a different context.

total = 58 # assignment

Arithmetic Operators

I Operators are special symbols that represent
computations, like addition and multiplication.

I Operands are the elements that the operators are
applied to.

Symbol Operation
+ addition
- subtraction
* multiplication
/ decimal division
// integer division
** exponentiation

Two Different Kinds of Division

Decimal division: /
This performs a normal, calculator-style division, where the
result has a decimal component.

I print(10/3) → 3.333333
I print(20/7) → 2.857142

Integer division: //
This performs the mathematical floor operation. It performs
the division as usual, but the decimal component is
discarded(not rounded).

I print(10//3) → 3
I print(20//7) → 2

Exponentiation

The exponentiation operator: a**b
This raises the first operand(the base) to the power of the
second operand(the power).

I print(5**2) → 25

The nth root
Exponentiation provides an easy way to determine the nth root
of a number. Simply raise the base to the power of a fraction.

I Square root: print(25**0.5) → 5
I Cube root: print(64**(1/3)) → 4

Order of Operations

Expressions
An expression is a combination of values, variables, and
operators.

Operator Precedence
I When more than one operator appears in an expression,

the order of evaluation depends on the rules of
precedence.

I In Python, the mathematical convention of PEMDAS is
used: Parentheses, Exponentiation, Multiplication,
Division, Addition, and Subtraction.

Order of Operations

Parentheses
These have the highest precedence, and can be used to force
an expression to evaluate in the order that you want.

Exponentiation
This has the next highest precedence.

Multiplication and Division
These have the same level of precedence. Operators at the
same level are evaluated from left to right.

Addition and Subtraction
These have the same level of precedence. Operators at the
same level are evaluated from left to right.

The Modulus Operator: %
The modulus works on integers, and outputs the remainder
when the first operand is divided by the second operand.

I print(7%3) → 1
I print(25%11) → 3

Checking if a number is even
Perform a modulus operation with 2, and if the result is 0,
then that number is even.

I print(10%2 == 0) → True

Checking if a number is odd
Perform a modulus operation with 2, and if the result is 1,
then that number is odd.

I print(17%2 == 1) → True

Extracting Digits from a Number

Extracting the right-most digit from a number
Perform a modulus operation with 10, and the result will be
the right-most digit.

I print(98%10) → 8

Extracting the two right-most digits from a number
Perform a modulus operation with 100, and the result will be
the two right-most digits.

I print(1524%100) → 24

Compound Assignment Operators

The += operator
Several assignment operators in Python combine a basic
operation with assignment. For example, the += operator can
be used as follows:

score = 10
score += 5 # score is now 15

The code above causes the value of score to be increased by
5. The code above is equivalent to the following:
score = 10
score = score + 5

Python’s Compound Assignment Operators

Op. Description Example Equivalence
= assignment x = y x = y
+= addition & assignment x += y x = x + y
-= subtraction & assignment x -= y x = x - y
*= multiplication & assignment x *= y x = x * y
/= division & assignment x /= y x = x / y
//= division & assignment x //= y x = x // y

Collecting Input from the User

I The input() function gets input from the keyboard.
I When this function is called, the program stops, and

waits for the user to type something.
I When the user presses Enter, the program resumes

execution.
I The input() function returns whatever the user typed as

a string.
I A programmer can display a prompt to the user, as a

guide on what kind of data to input.

name = input("What is your name?\n")
print("Hello, " + name)

Comments

I It is a good idea to add small notes to your programs, to
explain what your program is doing.

I These notes are called comments, and they must begin
with the # symbol.

I Any text from the # symbol to the end of the line is
ignored by the interpreter.

compute the percentage of the hour elapsed
percentage = (minute * 100) / 60

Also, you can write an inline comment as follows:
percentage = (minute * 100) / 60 # hour fraction

Python Syntax: End of Notes

