
Recursion
A programming technique in which a method calls itself

Alwin Tareen



Recursion
A description of the recursive technique

I Recursion is a programming techique in which a method
calls itself.

I Recursion can always be used in place of iteration, and
iteration can always be used in place of recursion.

I There are many situations in which recursion provides the
clearest, shortest and most elegant solution to a
programming task.

A recursive method has two kinds of cases:
I One or more stopping or base cases that solve the

problem without any recursive calls.
I One or more cases that include a recursive call(involving a

simpler problem).



Guidelines for Writing Recursive Methods

Must have a base case
I Just as we guard against writing infinite loops, we must

avoid recursions that never come to an end.
I A recursive method must have a well-defined termination

or stopping state, also referred to as the base case.
I For example:

if (n == 1)
{

return 1;
}



Guidelines for Writing Recursive Methods
The recursive case must approach the base case

I The recursive step, in which the method calls itself, must
eventually lead to a base case.

I Since each invocation of the method is passed a smaller
value, eventually the stopping state must be reached.

I If a method failed to reach the stopping state, the Java
interpreter would run out of memory, at which point the
program would terminate with a StackOverflow error.

I For example:

else
{

return n * factorial(n-1);
}



Characteristics of Recursive Methods

The following are some key features common to all
recursive routines:

I The method calls itself.
I When the method calls itself, if does so to solve a smaller

problem.
I There’s some version of the problem which is so simple

that the method can solve it, and return. This is the base
case.



Triangular Numbers

I Starting with 1, the nth term in a triangular series is
obtained by adding n to the previous term.

element 1 3 6 10 15 21
n 1 2 3 4 5 6

I These numbers can be visually arranged as a triangular
arrangement of objects:



Triangular Numbers

I Say you wanted to calculate the nth term in a triangular
series.

I You may decide that the value of any term can be
obtained by adding up all of the vertical columns of
squares.



Finding Triangular Numbers Iteratively

I The following program uses this column-based technique
to find a triangular number.

I The method cycles around the loop n times, adding n to
the total the first time, n-1 the second time, and so on
down to 1, quitting the loop when n becomes 0.



Finding Triangular Numbers Iteratively
public class TriangularIterative
{

public static int triangular(int n)
{

int total = 0;
while (n > 0)
{

total = total + n;
n--;

}
return total;

}

public static void main(String[] args)
{

int result = triangular(4);
System.out.println("n = 4, triangular = " + result);

}
}



Finding Triangular Numbers Recursively
The value of the nth term can be thought of as the
sum of only two things:
1. The first(tallest) column, which has the value n.
2. The sum of all the remaining columns.



Finding Triangular Numbers Recursively

I The sum of all the remaining columns for term n is the
same as the sum of all the columns for term n-1.

I Therefore, all we have to do is call the triangular()
method again, but with an argument of n-1.

I We must also provide a condition that leads to a recursive
method returning, without making another recursive call.
This is the base case.

I It’s critical that every recursive method has a base case to
prevent infinite recursion.



Finding Triangular Numbers Recursively

public class TriangularRecursive
{

public static int triangular(int n)
{

if (n == 1)
{

return 1;
}
else
{

return n + triangular(n-1);
}

}

public static void main(String[] args)
{

int result = triangular(4);
System.out.println("n = 4, triangular = " + result);

}
}



Factorial Numbers

I Factorial numbers are similar in concept to triangular
numbers, except that multiplication is used instead of
addition.

I The factorial of n is found by multiplying n by the
factorial of n-1.

factorial 1 1 2 6 24 120 720
n 0 1 2 3 4 5 6

I Note that the factorial of 0 is defined to be 1.



Factorial Numbers
I There are only two differences between the recursive

program for triangular numbers, and the recursive
program for factorial numbers.

I In the factorial program, the numbers are being multiplied
together, not added.

I In the factorial program, the base condition occurs when
n is 0, instead of 1.

The definition of the factorial function
I The definition of factorial can be written recursively.
I This means that the factorial of the number n can use the

factorial of the previous number, n-1, in its computation.
I n! = n ∗ (n − 1)!



Finding Triangular Numbers Recursively

public class FactorialRecursive
{

public static int factorial(int n)
{

if (n == 0)
{

return 1;
}
else
{

return n * factorial(n-1);
}

}

public static void main(String[] args)
{

int result = factorial(5);
System.out.println("n = 5, factorial = " + result);

}
}



Fibonacci Numbers

I In the fibonacci sequence, the first two terms are 1, and
then each term starting with the third term is equal to
the sum of the previous two terms.

fibonacci 1 1 2 3 5 8 13 21
n 1 2 3 4 5 6 7 8

Note that the recursive implementation of fibonacci
requires the following:

I Two base cases, for when n=1 and n=2.
I Two recursive calls to fibonacci().



Finding Fibonacci Numbers Recursively
public class FibonacciRecursive
{

public static int fibonacci(int n)
{

if (n == 1)
{

return 1;
}
else if (n == 2)
{

return 1;
}
else
{

return fibonacci(n-1) + fibonacci(n-2);
}

}



Finding Fibonacci Numbers Recursively, Continued

public static void main(String[] args)
{

int result = fibonacci(6);
System.out.println("n = 6, fibonacci = " + result);

}
}



Recursion: End of Notes


