
Sorting Algorithms
Rearranging data into a particular order

Alwin Tareen



Selection Sort

The “search and swap” algorithm
I Sorting algorithms take data in an array and rearrange it

into a particular order.
I The selection sort algorithm is commonly known as a

“search and swap” algorithm, due to its specific behavior.
I It works by selecting the smallest unsorted item remaining

in the array, and then swapping it with the item in the
next position to be filled.



Selection Sort

A description of the selection sort algorithm
I Similar to a linear search, selection sort will first loop

through the array, and look for the lowest value.
I Once it has found the lowest value, it will swap this

element with the element at index 0.
I Now, the first element is sorted.



Selection Sort

A description of the selection sort algorithm,
continued

I Then, the process repeats with the element at index 1.
I Starting from this position, it will search for the lowest

value in the rest of the array.
I Once the lowest value has been found, this element is

swapped with the element at index 1.
I Now, the first two elements are sorted.
I This process is repeated until the end of the array is

reached, and all the elements are sorted.
I Note that if the lowest value is already in its correct

position during the search, it will stay there.



Running the Selection Sort Algorithm
I Consider the following array. We want to sort it from

smallest to largest.
I Remember, our strategy is to first find the smallest

element in the array, and place it in the first position.

8 6 10 2 4
↑

exchange

I The first element we consider is the 6. It is smaller than
8, so it becomes the new minimum value.

8 6 10 2 4
↑ ↑

exchange min



Running the Selection Sort Algorithm

I Then, compare the 10 to the 6. The 10 is larger, so we
move on to the next element.

I Compare the 2 to the 6. The 2 is smaller, so it becomes
our new minimum.

8 6 10 2 4
↑ ↑

exchange min

I Then compare the 4 to the 2. The 4 is larger, so 2 is still
the minimum.



Running the Selection Sort Algorithm

I We have reached the end of the array, so we must swap
the 2 and the 8.

2 6 10 8 4
↑ ↑

swapped swapped

I The first element is now sorted.
I We repeat this process, starting with the second element.

2 6 10 8 4
↑ ↑

exchange min



Running the Selection Sort Algorithm

2 4 10 8 6
↑ ↑

swapped swapped

2 4 10 8 6
↑ ↑

exchange min

2 4 6 8 10
↑ ↑

swapped swapped



Running the Selection Sort Algorithm

I Once we reach the end of the array, we see that it is
sorted.

2 4 6 8 10



The SelectionSort Class
public class SelectionSort
{

public static void selectionSort(int[] arr)
{

int min = 0;
int temp = 0;
for (int i = 0; i < arr.length-1; i++)
{

min = i;
for (int j = i+1; j < arr.length; j++)
{

if (arr[j] < arr[min])
{

min = j;
}

}
temp = arr[i];
arr[i] = arr[min];
arr[min] = temp;

}
}



The SelectionSort Class, Continued

public static void main(String[] args)
{

int[] values = {12, 3, 8, 7, 9, 1, 23, 18};
selectionSort(values);
for (int item : values)
{

System.out.print(item + " ");
}

}
}



Insertion Sort

Applying a strategy of partial sortedness
I The array of elements is separated into two parts: a

partially sorted part, and an unsorted part.
I Partially sorted means that the elements are sorted

amongst themselves.
I However, the elements aren’t necessarily in their final

resting positions, because they may still need to be
moved, when other elements are inserted between them.



Insertion Sort

A description of the insertion sort algorithm
I The algorithm begins with the first element as the

partially sorted section, the second element as the item
under consideration, and the rest of the array as the
unsorted section.

I The goal is to insert the item under consideration into the
appropriate place in the partially sorted group.

I To achieve this goal, we may need to shift some elements
to the right, to make room for the insert.

I To provide a space for this shift, we place the item under
consideration into a temporary variable. This leaves an
empty space in the array.



Insertion Sort

A description of the insertion sort algorithm
I Then, we compare the item under consideration to its

left-hand neighbor in the partially sorted group.
I If this neighbor is larger, it gets shifted to the right, and

the item under consideration is inserted into index 0.
I If this neighbor is smaller, then the item under

consideration is placed back where it was.
I Now, the partially sorted group contains two elements.



Insertion Sort

A description of the insertion sort algorithm
I In general, you keep shifting partially sorted elements to

the right, until you find the proper position for the item
under consideration, and you insert the item at that spot.

I This process is repeated until all the unsorted items have
been inserted.



The InsertionSort Class
public class InsertionSort
{

public static void insertionSort(int[] arr)
{

int j = 0;
int index = 0;
for (int i = 1; i < arr.length; i++)
{

index = arr[i];
j = i;
while ((j > 0) && arr[j-1] > index)
{

arr[j] = arr[j-1];
j = j - 1;

}
arr[j] = index;

}
}



The InsertionSort Class, Continued

public static void main(String[] args)
{

int[] values = {12, 3, 8, 7, 9, 1, 23, 18};
insertionSort(values);
for (int item : values)
{

System.out.print(item + " ");
}

}
}



MergeSort

A “divide and conquer” algorithm
I MergeSort is a good example of the divide and conquer

principle.

Generally, we do the following:
I Break the problem into smaller sub-problems of the same

type.
I Solve those sub-problems recursively.
I Combine the solutions found for the individual

sub-problems into a solution for the entire problem.



MergeSort

The divide and conquer principle
I Divide the problem size into more comprehensible pieces.
I Conquer, or resolve the smaller pieces recursively.
I Combine, or put the pieces back together to create the

final solution.



MergeSort

A description of the MergeSort algorithm
I Divide step: divide the array in half.
I Conquer step: sort each half of the array. Note that the

base case of an one-element array is considered sorted.
I Combine step: merge the two halves into a single sorted

array.

A memory tradeoff
I Note that a disadvantage of the MergeSort is the need of

a temporary array, similar in size to the one being sorted.
I This means that MergeSort requires more memory than

the other sorts.



Running the MergeSort Algorithm
I We begin with an array of size 8:

64 21 33 70 12 85 44 3

I Divide this array in half:

64 21 33 70 12 85 44 3

I Divide each subarray in half:

64 21 33 70 12 85 44 3

I Then, divide each of those subarrays in half:

64 21 33 70 12 85 44 3



Running the MergeSort Algorithm

I We cannot divide the subarrays any further. We have
arrived at the base case, where it is assumed that an array
with one element can be considered sorted.

I Now, we must apply the combine step.
I Each of the one-element arrays are merged into a sorted

array of two elements.
I The smaller element is placed into the merged array first,

then the larger element goes in.

21 64 33 70 12 85 3 44



Running the MergeSort Algorithm

I Each of these two-element arrays are merged into a
four-element array, using the same technique.

21 33 64 70 3 12 44 85

I Finally, these four-element arrays are merged into a single
eight-element array, and the entire array is now sorted.

3 12 21 33 44 64 70 85

Analysis of the MergeSort algorithm
I Given an array of size n, the average runtime is: n log2 n



Sorting Algorithms: End of Notes


