Sorting Algorithms

Rearranging data into a particular order

Alwin Tareen

Selection Sort

The “search and swap” algorithm

» Sorting algorithms take data in an array and rearrange it
into a particular order.

» The selection sort algorithm is commonly known as a
“search and swap" algorithm, due to its specific behavior.

» It works by selecting the smallest unsorted item remaining
in the array, and then swapping it with the item in the
next position to be filled.

Selection Sort

A description of the selection sort algorithm

» Similar to a linear search, selection sort will first loop
through the array, and look for the lowest value.

» Once it has found the lowest value, it will swap this
element with the element at index 0.

» Now, the first element is sorted.

Selection Sort

A description of the selection sort algorithm,
continued

>

>

Then, the process repeats with the element at index 1.

Starting from this position, it will search for the lowest
value in the rest of the array.

Once the lowest value has been found, this element is
swapped with the element at index 1.

Now, the first two elements are sorted.

This process is repeated until the end of the array is
reached, and all the elements are sorted.

Note that if the lowest value is already in its correct
position during the search, it will stay there.

Running the Selection Sort Algorithm

» Consider the following array. We want to sort it from
smallest to largest.

» Remember, our strategy is to first find the smallest
element in the array, and place it in the first position.

|8 [6]10]2]4]
5

exchange

» The first element we consider is the 6. It is smaller than
8, so it becomes the new minimum value.

|8 [6 [10]2]4]
T T

exchange min

Running the Selection Sort Algorithm

» Then, compare the 10 to the 6. The 10 is larger, so we
move on to the next element.

» Compare the 2 to the 6. The 2 is smaller, so it becomes
our new minimum.

. 8 [6[10] 2 [4]
T T
exchange min

» Then compare the 4 to the 2. The 4 is larger, so 2 is still
the minimum.

Running the Selection Sort Algorithm

» We have reached the end of the array, so we must swap
the 2 and the 8.

2 [e]0] & [4]
T ?

swapped swapped

» The first element is now sorted.

» We repeat this process, starting with the second element.

(2] 6 [10]8] 4 |
T ?

exchange min

Running the Selection Sort Algorithm

2] 4 J10|8] 6

swapped swapped

(2]4] 10 [8] 6 |
T 1

exchange min

(2/4] 6 [8] 10 |
T T
swapped swapped

Running the Selection Sort Algorithm

» Once we reach the end of the array, we see that it is
sorted.

[2]4]6[8[10]

The SelectionSort Class

{

{

public class SelectionSort

public static void selectionSort(int[] arr)

int min = 0

H
int temp = O;
for (int i =

{

0; i < arr.length-1; i++)

min = i;
for (int j = i+l; j < arr.length; j++)
{

if (arr[j] < arr[min])

{
min = j;
}
}
temp = arr[il;
arr[i] = arr[min];

arr[min] = temp;

The SelectionSort Class, Continued

public static void main(String[] args)

{
int[] values = {12, 3, 8, 7, 9, 1, 23, 18};
selectionSort(values);
for (int item : values)
{

System.out.print(item + " ");

}

}

}

Insertion Sort

Applying a strategy of partial sortedness

» The array of elements is separated into two parts: a
partially sorted part, and an unsorted part.

» Partially sorted means that the elements are sorted
amongst themselves.

» However, the elements aren't necessarily in their final
resting positions, because they may still need to be
moved, when other elements are inserted between them.

Insertion Sort

A description of the insertion sort algorithm

» The algorithm begins with the first element as the
partially sorted section, the second element as the item
under consideration, and the rest of the array as the
unsorted section.

» The goal is to insert the item under consideration into the
appropriate place in the partially sorted group.

» To achieve this goal, we may need to shift some elements
to the right, to make room for the insert.

» To provide a space for this shift, we place the item under
consideration into a temporary variable. This leaves an
empty space in the array.

Insertion Sort

A description of the insertion sort algorithm

» Then, we compare the item under consideration to its
left-hand neighbor in the partially sorted group.

» If this neighbor is larger, it gets shifted to the right, and
the item under consideration is inserted into index 0.

» If this neighbor is smaller, then the item under
consideration is placed back where it was.

» Now, the partially sorted group contains two elements.

Insertion Sort

A description of the insertion sort algorithm

» In general, you keep shifting partially sorted elements to
the right, until you find the proper position for the item
under consideration, and you insert the item at that spot.

» This process is repeated until all the unsorted items have
been inserted.

The InsertionSort Class

public class InsertionSort

{
public static void insertionSort(int[] arr)
{

int j = 0;

int index = 0;

for (int i = 1; i < arr.length; i++)

{
index = arrl[il;
jo=1i;
while ((j > 0) &% arr[j-1] > index)
{
arr[j] = arr[j-1]1;
i=i- %
}
arr[j] = index;
}

The InsertionSort Class, Continued

public static void main(String[] args)

{
int[] values = {12, 3, 8, 7, 9, 1, 23, 18};
insertionSort(values);
for (int item : values)
{

System.out.print(item + " ");

}

}

}

MergeSort

A “divide and conquer” algorithm

» MergeSort is a good example of the divide and conquer
principle.

Generally, we do the following:

» Break the problem into smaller sub-problems of the same
type.
» Solve those sub-problems recursively.

» Combine the solutions found for the individual
sub-problems into a solution for the entire problem.

MergeSort

The divide and conquer principle

» Divide the problem size into more comprehensible pieces.
» Conquer, or resolve the smaller pieces recursively.

» Combine, or put the pieces back together to create the
final solution.

MergeSort

A description of the MergeSort algorithm

» Divide step: divide the array in half.

» Conquer step: sort each half of the array. Note that the
base case of an one-element array is considered sorted.

» Combine step: merge the two halves into a single sorted
array.

A memory tradeoff

» Note that a disadvantage of the MergeSort is the need of
a temporary array, similar in size to the one being sorted.

» This means that MergeSort requires more memory than
the other sorts.

Running the MergeSort Algorithm

» We begin with an array of size 8:

164 [21[33]70]12]85]|44 3]

» Divide this array in half:

164213370 [12|85]|44 3]

» Divide each subarray in half:

| 64]21] [33]70] [12|85| |44]3]

» Then, divide each of those subarrays in half:

[64] [21] [33] [70] [12] [&5] [44] [3]

Running the MergeSort Algorithm

» We cannot divide the subarrays any further. We have
arrived at the base case, where it is assumed that an array
with one element can be considered sorted.

» Now, we must apply the combine step.

» Each of the one-element arrays are merged into a sorted
array of two elements.

» The smaller element is placed into the merged array first,
then the larger element goes in.

(21]64] [33]70] [12]85] [3][44]

Running the MergeSort Algorithm

» Each of these two-element arrays are merged into a
four-element array, using the same technique.

121[33[64]|70]| [3[12]44]85]

» Finally, these four-element arrays are merged into a single
eight-element array, and the entire array is now sorted.

13[12]21[33[44[64]70]85]

Analysis of the MergeSort algorithm

» Given an array of size n, the average runtime is: nlog, n

Sorting Algorithms: End of Notes

