
Polymorphism
Allowing methods and objects to take on different forms

Alwin Tareen

Polymorphism: Method Overloading

Method overloading
I This is where more than one method in the same class

has the same name, but different parameter lists. For
example:

public double calcArea(doulbe length, double width)
public double calcArea(double radius)
public double calcArea(double base, double height)

Polymorphism: Superclass References

Consider the following class, Pet:
public class Pet
{

private String name;

public Pet(String n)
{

name = n;
}

}

Polymorphism: Superclass References
Consider Dog and Cat, which are subclasses of Pet:
public class Dog extends Pet
{

public Dog(String n)
{

super(n);
}

}

public class Cat extends Pet
{

public Cat(String n)
{

super(n);
}

}

Polymorphism: Superclass References

Now, consider the following client class that uses Dog, Cat,
and Pet:
public class PetTest
{

public static void main(String[] args)
{

Pet animal;
animal = new Dog("Fido");
animal = new Cat("Fluffy");

}
}

Polymorphism: Superclass References

I The previously indicated code is an example of
polymorphism. First, I declared a reference of type Pet,
called animal. Then, I can assign both a Dog object and
a Cat object to the reference animal.

I In general, animal can reference any object of a class
that is a subclass of Pet.

Downcasting
Consider the following Pet class, with an instance variable, a
constructor, and a method:
public class Pet
{

private String name;

public Pet(String n)
{

name = n;
}

public String getName()
{

return name;
}

}

Downcasting

Now consider the following Dog class, which is a subclass of
Pet:
public class Dog extends Pet
{

public Dog(String n)
{

super(n);
}

public String bark()
{

return "ruff, ruff";
}

}

Downcasting

Consider the following client class, where the bark() method
is being run on a Dog object.
public class DogTest
{

public static void main(String[] args)
{

Pet animal = new Dog("Fido");
System.out.println(animal.getName());

String result = animal.bark(); // ERROR!
System.out.println(result);

}
}

Downcasting

animal can only access Pet methods
I Even though the reference called animal has a Dog

object created within it, it is a Pet data type, and
therefore can only access Pet methods.

The bark() method requires a downcast
I Therefore, the call to getName() works fine, but the call

to the method bark() requires that the animal reference
be cast to a Dog data type, before the call is made. This
is called a downcast.

I Subclass methods can only be “seen” by superclass
references with a downcast.

Downcasting
The following is the corrected version of DogTest. Note that
we need an extra set of brackets to force the downcast to be
evaluated first, because the dot operator has a higher level of
precedence.
public class DogTest
{

public static void main(String[] args)
{

Pet animal = new Dog("Fido");
System.out.println(animal.getName());

String result = ((Dog) animal).bark(); // downcast
System.out.println(result);

}
}

Polymorphism: End of Notes

