
Inheritance
Providing a unique form of code-sharing

Alwin Tareen



What is Inheritance?
Code sharing

I Inheritance provides a unique form of code-sharing by
allowing you to take the implementation of any class, and
build a new class based on that implementation.

Subclasses and superclasses
I A subclass starts by inheriting all of the public data and

methods that are defined in the superclass.
I The subclass can then extend its behavior by adding

additional data and new methods.
I The subclass can also extend or replace behavior in the

superclass by overriding methods that were already
implemented.



What is Inheritance?

The is-a relationship
I Inheritance implements the is-a relationship between

objects:

subclass is-a superclass
high school is-a school

student is-a person



Rules for Subclasses

A subclass can add new private instance variables.
I The Student class adds two private instance variables

of its own: ID and classification.

A subclass can add new public or private
methods.

I The Student class inherits the methods getName,
getAddress, getPhone, and toString from the Person
class.

I The Student class adds two methods of its own: getID
and getClassification.



Rules for Subclasses

A subclass can override(redefine) inherited methods.
I The Person class defines a toString method. The

Student class also defines a toString method with the
exact same signature(same name, return type and
quantity/data type of parameters).

I Therefore, the Student class has overridden or redefined
the toString method, so that its behavior is more
suitable to its specific needs.



Rules for Subclasses
Partial overriding

I Sometimes the code for overriding a method includes a
call to the superclass method. This is called partial
overriding.

I Typically, this occurs when the subclass method wants to
do what the superclass method does, plus something
extra.

I This is achieved by using the keyword super in the
implementation.

I The toString method in the Student class partially
overrides the toString method in the Person class.

I The statement super.toString() signals that the
toString method in the superclass should be invoked
here.



Rules for Subclasses

A subclass must define its own constructors.
I Constructors are not inherited, therefore a subclass has

to provide its own.

A subclass cannot directly access the private
members of its superclass.

I A subclass should use the publicly declared
accessor/mutator methods to access the instance
variables of its superclass.



Rules for Subclasses

A subclass’ constructors can explicitly call the
superclass’ constructors by using the keyword
super.

I If super is used, then it must be the first statement in
the subclass’ constructor.

I For example, the Student’s constructor calls the Person
class’ constructor with the statement: super(n, a, p);

I This allows the name, address and phone variables to be
initialized.



The Person Class
public class Person
{

private String name;
private String address;
private String phone;

public Person(String n, String a, String p)
{

name = n;
address = a;
phone = p;

}

public String getName()
{

return name;
}



The Person Class, Continued
public String getAddress()
{

return address;
}

public String getPhone()
{

return phone;
}

public String toString()
{

String result = "Name: " + name + "\n";
result += "Address: " + address + "\n";
result += "Phone: " + phone + "\n";
return result;

}
}



The Student Class
public class Student extends Person
{

private String ID;
private int classification;

public Student(String n, String a, String p, String id, int c)
{

super(n, a, p);
ID = id;
classification = c;

}

public String getID()
{

return ID;
}

public int getClassification()
{

return classification;
}



The Student Class, Continued

public String toString()
{

result = super.toString() + "\n";
result += "ID: " + ID + "\n";
result += "classification: " + classification;
return result;

}
}



The PersonTest Class

public class PersonTest
{

public static void main(String[] args)
{

Person bob = new Person("Bob", "BDNS", "3245893");
System.out.println(bob);
System.out.println();

Student dan = new Student("Dan", "BNDS", "8675309", "SN938", 4);
System.out.println(dan);

}
}



Inheritance: End of Notes


