
ArrayLists
A Flexible Data Structure for Use with Objects

Alwin Tareen



The ArrayList Data Structure

I As we have seen, the array is a very powerful data
structure that has many uses. However, arrays are
assigned a fixed size when they are created, and this size
cannot be changed.

I Java provides a data structure called an ArrayList that
is very similar to an array, except that it can be easily
re-sized while your program is running.

I Since an ArrayList can grow and shrink while your
program runs, it is a more efficient use of memory, and
can also be simpler to use.



Declaring and Instantiating an ArrayList

I Note that a programmer must use methods(add, get,
etc.) rather than the square bracket notation to
manipulate elements in an ArrayList.

I The ArrayList is part of Java’s util library.
I Therefore, if you want to use an ArrayList in your

program, you must include the following import
statement at the top of your file:
import java.util.*;



Declaring and Instantiating an ArrayList

I The following statement declares an ArrayList of type
String:
ArrayList<String> words = new ArrayList<String>();

I Since the ArrayList is a class, you must use the new
operator followed by a constructor call to instantiate an
ArrayList object.



ArrayList Methods

ArrayList provides two methods for adding elements to a
list, both of which are named add.

add(x)
I This method works like an append, by adding the element

to the end of the list. This method takes one parameter,
which is the element to be added.

words.add("pizza");



ArrayList Methods

add(i, x)
I This method takes two parameters and works like an

insert. The first parameter represents the location in the
list where the element is to be inserted.

I Starting at the given index position, all elements after
this position are pushed forward by one.

words.add(3, "pizza");



ArrayList Methods

get(i)
I The get method works like the square bracket notation

with an array.
I The get method takes one parameter, which is the

location of the element to be retrieved.

String element = words.get(5);



ArrayList Methods

remove(i)
I The remove method takes one parameter, which is the

location of the element to be removed.
I Starting at the given index position, all elements after

this position are moved back by one.
I This method also returns the deleted item.

String element = words.remove(7);



ArrayList Methods

set(i, x)
I The set method replaces an element at a given location.
I This method takes two parameters.
I The first parameter is the index of the element to be

replaced.
I The second parameter is the element’s new value.
I This method returns the replaced element.

String element = words.set(6, "burger");



ArrayList Methods

size()
I The size method returns the number of elements which

are currently in the list.

int num = words.size();

isEmpty()
I The isEmpty method returns true if the list contains no

elements, and false otherwise.

boolean result = words.isEmpty();



ArrayList Methods

contains(x)
I The contains method takes one parameter, which is an

object element.
I It returns true if that element is within the ArrayList,

and false otherwise.

boolean result = words.contains("pizza");



The Enhanced for Loop
The for-each loop

I There is a convenient shortcut for iterating through a
sequence of elements, such as an array or an ArrayList.

I It is called the enhanced for loop, or the for-each loop.
I Suppose you wanted to sum up all of the values in an

array named data. The following is a typical for loop
operation that can perform this task.

double[] data = {5.1, 8.7, 6.3, 9.2};
double total = 0.0;
for (int i = 0; i < data.length; i++)
{

double item = data[i];
total += item;

}



The Enhanced for Loop

The for-each loop
I The following code demonstrates how you would use an

enhanced for loop to carry out the same task.

double[] data = {5.1, 8.7, 6.3, 9.2};
double total = 0.0;
for (double item : data)
{

total += item;
}



The Enhanced for Loop

Explanation of the for-each loop
I The loop body is executed for each element in the array

data.
I At the beginning of each loop iteration, the next element

is assigned to the variable item.
I Then, the loop body is executed. You can read this loop

as: for each item in data.



The Enhanced for Loop

An important difference
I Note that there is an important difference between the

for-each loop and the ordinary for loop.
I In the for-each loop, the element variable item is

assigned to the values data[0], data[1], in turn, all the
way up to the last element.

I In the ordinary for loop, it is the index variable i which
is assigned to the values 0, 1, 2, etc.



Using the Enhanced for Loop with an ArrayList

I You can use the enhanced for loop to visit all of the
elements of an ArrayList.

I Assume that an ArrayList named accounts has been
defined, and it has been populated with BankAccount
objects.

I Consider the following for loop which computes the total
value of all accounts.

double total = 0.0;
for (int i = 0; i < accounts.size(); i++)
{

BankAccount item = accounts.get(i);
total += item.getBalance();

}



Using the Enhanced for Loop with an ArrayList

I The following is the equivalent for-each loop that would
perform the same action as the previous code:

double total = 0.0;
for (BankAccount item : accounts)
{

total += item.getBalance();
}



Conditions for Using the Enhanced for Loop

Note that the for-each loop is suitable only if the
following conditions hold:

I You want to traverse all the elements.
I You do not want to change or update any of the elements.

I If, for instance, you want to alter the elements while
looping through them, then you must use a regular for
loop.



ArrayLists: End of Notes


