
Parameters of Different Types
Using Primitive, Object, and Array Parameters

Alwin Tareen



Parameters of Primitive Types

I When a method has a primitive type as a parameter, Java
passes that parameter using a technique called
pass-by-value.

I A method that is passed a parameter of a primitive type
is passed a copy of that parameter’s value.

I This means that the calling method has no access to this
parameter itself.



Pass-by-Value
public class PassingPrimitives
{

public static void displayScore()
{

int score = 10;
displayTotal(score);
System.out.println(score);

}
public static void displayTotal(int total)
{

total = 75;
System.out.println(total);

}
public static void main(String[] args)
{

displayScore();
}

}



Pass-by-Value
I displayScore() begins by defining a local variable of

type int named score, and initializing it with a value of
10.

Java Memory
score 10

I A call is made to the displayTotal() method, and
score is passed as a parameter.

I The method displayTotal() executes, and a copy of
the value in score is assigned to total.

Java Memory
score 10
total 10



Pass-by-Value
I total is then assigned a value of 75. Notice that this

has no effect on the variable score.

Java Memory
score 10
total 75

I total is then displayed.
I Execution then returns to displayScore(), where

score is displayed. Since total received a copy of
score’s value, displayTotal() had no access to score.

Java Memory
score 10



Parameters of Object Types

I When a method has an object type as a parameter, Java
passes that parameter using a technique called
pass-by-reference.

I A method that is passed a parameter of an object type is
passed the reference(memory location) to the object
assigned to that parameter.



Parameters of Object Types
public class Digit
{

private int num;

public Digit()
{

num = 0;
}

public int getNum()
{

return num;
}

public void setNum(int n)
{

num = n;
}

}



Parameters of Object Types
public class PassingObjects
{

public static void outputResult()
{

Digit item = new Digit();
outputSolution(item);
System.out.println(item.getNum());

}
public static void outputSolution(Digit element)
{

element.setNum(75);
System.out.println(element.getNum());

}
public static void main(String[] args)
{

outputResult();
}

}



Parameters of Object Types

I outputResult() begins by instantiating(creating) a
Digit object and storing its reference in a variable named
item.

Java Memory
item → Digit

num 0

I A call is made to the outputSolution() method, and
item is passed as a parameter.



Parameters of Object Types

I Inside outputSolution(), element is passed a reference
to the object assigned to item. This means that item
and element are now referencing the same object. A
copy of the object is not made(as was done when using
pass-by-value).

Java Memory
item → Digit

element → num 0



Parameters of Object Types

I Then, the Digit class’ setNum() method is executed on
the element object. This updates the instance variable
num, giving it a value of 75.

Java Memory
item → Digit

element → num 0 75

I Then, the Digit class’ getNum() method is run on the
element object, which displays the value of num.



Parameters of Object Types

I Execution returns to outputResult() where a call is
made to the Digit class’ getNum() method on the item
object. The value of num is displayed: 75.

Java Memory
item → Digit

element → num 75



Parameters of an Array Type

I Arrays are objects, and they can be passed as parameters
to other methods.

I This means that the arrays are passed using
pass-by-reference.

I In other words, the contents of the array can be altered
by the method to which it was passed.



The PassingArrays Class

public class PassingArrays
{

public static void initializeArray()
{

int[] scores = {10, 20, 30};
alterArray(scores);
displayArray(scores);

}

public static void alterArray(int[] points)
{

displayArray(points);
points[0] = 500;

}



The PassingArrays Class, Continued

public static void displayArray(int[] arr)
{

for (int i = 0; i < arr.length; i++)
{

System.out.print(arr[i] + " ");
}
System.out.println();

}

public static void main(String[] args)
{

initializeArray();
}

}



Parameters: End of Notes


