
Object Oriented Programming
Creating Classes with State and Behavior

Alwin Tareen



Object Oriented Programming

What is a class?
I As software systems become more complex, programmers

look for better ways to develop software.
I One particular way is to divide a programming problem

into discrete classes where each class has a specific task
to perform, in solving the problem.

I A class is a description, model, or blueprint from which
an object is created.



Object Oriented Programming

A class describes 2 characteristics of an object:
I It describes what data an object stores, known as an

object’s attributes. These are defined through the
instance variables.

I It describes what an object does, known as an object’s
behavior. This is defined through the methods.

class
state → instance variables

behavior → methods

I The process of combining state and behavior into a single
class is called encapsulation.



Object Oriented Programming

I Suppose you wanted to write a program that simulated
the rolling of a single die.

I You could make a class called Die that would define the
behavior for an object that represented a single six-sided
die.

I Then, you could make another class called DieTest that
created an object from the Die class, and simulated the
rolling of a die.



Object Oriented Programming
public class Die
{

private int faceValue;

public Die()
{

faceValue = 1;
}

public void roll()
{

faceValue = (int) (Math.random() * 6) + 1;
}

public int getFaceValue()
{

return faceValue;
}

}



Object Oriented Programming

public class DieTest
{

public static void main(String[] args)
{

Die cube = new Die();
cube.roll();
System.out.println(cube.getFaceValue());

}
}



Instance Variables

I These are variables that describe the state of an object,
also known as its attributes.

I They are always declared private.
I You can use them in any method in the class.
I Don’t initialize them, because they are always

automatically assigned default values.

int → 0
double → 0.0
boolean → false
object references → null



Constructors
I A constructor is a special method within a class, that has

the same name as the class.
I The primary purpose of a constructor is to assign initial

values to the class’ instance variables.
I When defining a constructor, you must not specify a

return type.

public class Person
{

private String name;

public Person()
{

name = "";
}

}



Constructors

I A constructor with no parameters is called the default
constructor.

I A class can have more than one constructor. Providing
multiple constructors makes a class more flexible and easy
to use.

I When using multiple constructors, the parameter list of
each constructor within a class must be unique.

I Parameter lists must differ by either the number of
parameters defined, or by the parameter type.



Constructors

I The following constructors differ in the number of
parameters.

public Person()
public Person(String n)

public Student(String n)
public Student(String n, int age)

I The following constructors differ in the type of
parameters.

public Area(int length, int width)
public Area(double length, double width)



Constructors
I Constructors are invoked or called when you construct

an object using the keyword new.
I The follwing code instantiates two Student objects.
I The first statement uses the Student class’ default

constructors.
I The second statement uses the Student class’

constructor that takes 2 parameters.

Student alice = new Student();
Student bob = new Student("Bob", 17);

I Note that if a class contains no constructors, then Java
will automatically provide a default constructor for the
class.



Code Example: The Dog Class
public class Dog
{

private int size;
private String name;

public Dog()
{

size = 0;
name = "";

}

public Dog(int dogSize, String dogName)
{

size = dogSize;
name = dogName;

}



Code Example: The Dog Class, Continued

public int getSize()
{

return size;
}

public String getName()
{

return name;
}

}



Accessor Methods

I Instance variables must be declared private, as
demonstrated in the following Student class:

public class Student
{

// instance variables
private String name;
private int age;



Accessor Methods

I By declaring the instance variables as private, client
programs that create objects from the class are not
allowed to access the instance variables directly, using the
dot operator:

public class StudentTest
{

public static void main(String[] args)
{

Student pupil = new Student();
pupil.name = "George" // ERROR

}
}



Accessor Methods

I However, client programs often need the ability to see the
contents of the instance variables of an object.

I For this reason, classes are often designed with a special
type of method called an accessor method.

I Methods defined in a class which allow clients to observe
instance variables(but not modify them) are called
accessor methods.

I Remember, client programs do not have direct access to
these instance variables, because they are declared
private.

I The only way that client programs can view the values of
the instance variables, is if there are accessor methods
that provide them with this information.



Code Example: The Student Class
public class Student
{

private String name;
private int age;

public Student()
{

name = "";
age = 0;

}

public String getName()
{

return name;
}

public int getAge()
{

return age;
}

}



Accessor Methods
I The purpose of an accessor method is to allow a client

program to see the value of an instance variable.
I For example, the getName() accessor method from the

Student class allows clients to see the contents of the
name instance variable.

I Accessor methods are declared with a return type that
corresponds to the data type of the instance variable
being accessed.

private String name;

private String getName()
{

return name;
}



Accessor Methods

I Note: A common practice is to define accessor methods
with the word get in front of their name, followed by the
name of the instance variable they are accessing.

I For example, getName(), getLength(), getWidth(),
getScore(), getTemperature(), etc.

Student pupil = new Student("Bob", 17);

System.out.println(pupil.getName());
System.out.println(pupil.getAge());



Mutator Methods

I Methods in a class that allow clients to modify an
object’s instance variables are called mutator methods.

I If the instance variables of a class are declared private,
then clients who instantiate objects of this class do not
have direct access to its instance variables.

I If you wish for clients to have the ability to change the
value of a particular instance variable, then you must
provide a mutator method for that variable in the class
implementation.



Mutator Methods

I Consider the following mutator method that is defined for
the Student class:

public void setName(String n)
{

name = n;
}

I This method, when called, will change the value of the
name instance variable to the value specified by the
parameter n.

I This method allows clients to mutate or change the
contents of the variable name.



Mutator Methods
I If you don’t want a client to have the ability to modify a

particular instance variable, then don’t provide a mutator
method for that variable.

I Mutator methods are defined with a return type of void,
since they do not return a value.

I Note: A common practice is to define mutator methods
with the word set in front of their name, followed by the
name of the instance variable they are modifying.

I For example, setLength(), setWidth(), setScore(),
setName(), setTemperature(), etc.

Student pupil = new Student();
pupil.setName("Alice");
pupil.setAge(17);



Code Example: The Cat Class
public class Cat
{

private String name;
private int size;

public Cat()
{

name = "";
size = 0;

}

public Cat(String n, int s)
{

name = n;
size = s;

}



Code Example: The Cat Class, Continued

// accessor methods
public String getName()
{

return name;
}

public int getSize()
{

return size;
}



Code Example: The Cat Class, Continued

// mutator methods
public void setName(String n)
{

name = n;
}

public void setSize(int s)
{

size = s;
}

}



The toString() Method

I The purpose of the toString() method is to provide
client programs with an easy way to print the contents of
the instance variables of a class.

I It can also be used to print other information within an
object, such as the results of method calls.

I The toString() method of an object is activated by
enclosing the object name within a println() statement:

Student pupil = new Student("Bob", 17);
System.out.println(pupil);



The toString() Method

I Any class can include a toString() method in its
implementation. The method must use the following
format:

public String toString()
{

...
}

I Within the body of toString(), a String is defined and
returned to the println() method of the client program.

I The String is often built using a series of concatenation
operators, so the String can include more than one
variable.



The toString() Method

I Labels are often included within the String to make the
output easily readable by the user.

I The escape sequence \n is also used to embed newline
characters within the String, so the output can be
displayed on multiple lines.

public String toString()
{

String result = "";
result += "Name: " + name + "\n";
result += "Age: " + age;
return result;

}



Object Oriented Programming:
End of Notes


