
Arrays
A Collection of Data for Simple Access

Alwin Tareen



The Array Data Structure

What is a data structure?
I A data structure is a collection of data elements that are

combined together under one name.
I Data structures are used for storing and organizing data

so that it can be used efficiently.

What is an array?
I An array is a data structure that stores a collection of

individual values that are of the same data type.
I For example, an array can contain ints, doubles, etc.



Declaring and Defining an Array
Declaring an array

I To declare an array variable, you must include square
brackets [] between the data type and the variable name.

int[] tests;

Defining an array
I To create the array itself, we must specify its data type,

and the quantity of elements that it can contain.

tests = new int[10];

I This statement creates an array that will store 10 values
of type int.



Declaring and Defining an Array

Using a single statement
I The declaring and initializing of an array can occur in a

single statement. Arrays are usually constructed in this
manner.

int[] nums = new int[5];

I Note that in the above code statement:
I An array variable named nums is declared.
I An array object of size 5 is defined, of data type int.



Accessing the Elements of an Array

I To access the individual elements of an array, you must
use the array variable’s name followed by the number of
the element, enclosed in square brackets.

I This number is referred to as the index.
I The following code places elements into indexes 0 and 1.

nums[0] = 5;
nums[1] = 38;

I The following code reads from indexes 0 and 1.

System.out.println(nums[0]);
System.out.println(nums[1]);



Initializer Lists

A programmer’s shortcut
I An initializer list allows you to declare an array, and assign

values to each of its elements, in a single statement.

double[] scores = {93.7, 86.2, 91.5, 98.3};

I This creates an array of size 4, and assigns each of the
elements the following values:

element 93.7 86.2 91.5 98.3
index 0 1 2 3



Index Out of Bounds Exception

I If you attempt to index an element of an array that does
not exist, Java will return an IndexOutOfBounds
exception.

int[] points = new int[3];
points[5] = 99; // IndexOutOfBounds exception

I This usually occurs when you attempt to access an
element that is located beyond the size of the array.

I This is a very common error in Java programming, and
you must avoid it as much as possible.



Looping through an Array(Traversing)
I Suppose we want to create an integer array of size 20

called nums, and fill each element of the array with a
random number in the range of 0 to 99.

I It would be inefficient to assign the random values to
each element of the array in the following manner:

nums[0] = (int) (Math.random() * 100);

I A much better approach would be to use a for loop to
iterate through all the elements of the array.

for (int i = 0; i < 20; i++)
{

nums[i] = (int) (Math.random() * 100);
}



Looping through an Array(Traversing)

I We can also use a for loop to view the contents of an
array:

for (int i = 0; i < 20; i++)
{

System.out.println(nums[i]);
}

I A concise way of displaying arrays is to use the Arrays
class. It is contained in the library java.util.

import java.util.*;
String result = Arrays.toString(nums);
System.out.println(result);



Determining the Quantity of Elements

Using the data member: length
I Java allows you to determine the quantity of elements in

an array using length, a data member of the array
object.

I In the following code statement, samples.length is 50.

double[] samples = new double[50];



Determining the Average
I The following Java program calculates the average from

a group of random numbers. Note the use of length.

double total = 0.0;
double[] samples = new double[50];

for (int i = 0; i < samples.length; i++)
{

samples[i] = Math.random() * 100;
total += samples[i];

}

double average = total/samples.length;
System.out.println("Average = " + average);



Appropriate Use of length/length()

String → length()
I The String class has a method named length() that

returns the quantity of characters in that String.

Array → length
I On the other hand, an array has a variable named

length that contains the quantity of elements in that
array.

String method
int qty = word.length();

Array variable
int qty = nums.length;



Two-Dimensional Arrays
The concept of a 2-D array

I Suppose I declare an array of size 5, named table.
I Instead of filling the array with integers or Strings, I

place an array in each cell.
I In this case, I have created an array of arrays, also known

as a two-dimensional array.



Two-Dimensional Arrays

Initializing a 2-D array
I In Java, two-dimensional arrays are defined using the

following notation:

int[][] table = new int[5][5];

I Note the double square brackets. This indicates the
dimension, which in this case is 2.

I Symbolically, it is easier to think of a 2-dimensional array
as a grid, with rows and columns.

I The first 5 declares the number of rows.
I The second 5 declares the number of columns.



Two-Dimensional Arrays
A grid representation of a 2-D array

columns
0 1 2 3 4

0
1

rows 2
3
4

I Location [1][3] would be 2 rows down and 4 columns
across. Remember that rows and columns start with 0.

I Similarly, location [4][2] would be 5 rows down and 3
rows across.



Two-Dimensional Arrays
Determining the number of rows and columns

I The number of rows in a 2-D array is found in:
table.length

I The number of columns in a 2-D array is found in:
table[0].length

Additional details
I All the elements of a 2-dimensional array must be of the

same data type(int, double, etc.).
I The first index of an array initialization statement always

represents the row, and the second index represents the
column.

I All 2-dimensional arrays in the AP exam are guaranteed
to be square or rectangular(no ragged edge arrays).



Two-Dimensional Arrays
I The following code indicates how a 2-dimensional array

assigns values to its elements.

int[][] matrix = new int[5][5];
matrix[0][2] = 10;
matrix[1][4] = 20;
matrix[3][0] = 30;

columns
0 1 2 3 4

0 10
1 20

rows 2
3 30
4



Two-Dimensional Arrays

Initializer lists
I A 2-dimensional array can be established with an

initializer list.
I The number of inner lists determines the number of rows,

and the size of each inner list determines the number of
columns in that particular row.

int[][] matrix = {{0, 1, 2, 3, 4}, // row 0
{10, 11, 12, 13, 14}, // row 1
{20, 21, 22, 23, 24}, // row 2
{30, 31, 32, 33, 34}}; // row 3



Two-Dimensional Arrays
Displaying a 2-D array

I Generally, you would use two for loops to display a
2-dimensional array.

I A better way is to use the Arrays class from the
java.util library.

import java.util.*;
String display = "";

for (int row = 0; row < table.length; row++)
{

display += Arrays.toString(table[row]) + "\n";
}
System.out.println(display);



Looping Through a 2-D Array(Traversing)
I The easiest way to manipulate a 2-dimensional array is to

use nested for loops.
I The following code sums all of the numbers in the

2-dimensional array called nums.
I The outer loop iterates 4 times, and moves down the

rows.
I Each time through the outer loop, the inner loop iterates

5 times and moves across the columns of the current row.

for (int row = 0; row < 4; row++)
{

for (int col = 0; col < 5; col++)
{

total += nums[row][col];
}

}



Looping Through a 2-D Array(Traversing)
I In the previous case, we used a limit of 4 for the number

of rows, and a limit of 5 for the number of columns.
I However, there are cases in which we won’t know the

quantity of rows and columns in the 2-D array.
I Therefore, it is much more practical to use the length

variable instead of literal numbers.
I Recall that nums.length is the number of rows, and

nums[0].length is the number of columns.

for (int row = 0; row < nums.length; row++)
{

for (int col = 0; col < nums[0].length; col++)
{

total += nums[row][col];
}

}



Arrays: End of Notes


