
Methods, Arguments and Parameters
Structuring your Progams for Code Reuse

Alwin Tareen



Method Types

What is a Method?
I A method is simply a block of code that is assigned a

name.
I In Java, there are two types of methods that you can

write. These methods are identified by the type of task
that they perform.

void methods
These are methods that do not give you any data back. They
have no return statement.

Non-void methods
These are methods that give you some kind of data back.
They must have a return statement.



void Methods
I Consider the following void method called printName()
I This method’s return type is declared void.
I This method performs a task, but it does not give any

data back.

public static void printName()
{

System.out.println("Bob Smith");
}

Calling void methods
I To execute or call a void method, you write the method

name along with open and closed parentheses.
I Note that a void method is called as a single statement

on a line by itself.



Methods Called by Other Methods
public static void printFirstName()
{

System.out.println("Bob");
}

public static void printLastName()
{

System.out.println("Smith");
}

public static void printName()
{

printFirstName();
printLastName();

}



Non-void Methods
I Non-void methods differ from void methods in that they

give data back. What they give back depends upon their
return type.

public static int calcSum()
{

int first = 5;
int second = 8;
return first + second;

}

I The return type for the method calcSum() is int.
I The keyword return is required in all non-void methods.
I Since the return type is int, the method must return an

integer.



Non-void Methods

Type Matching
I A non-void method’s return type can be any valid data

type, as long as the code after the return keyword
matches the return data type.

Examples using return
I A method can return a literal value:

return 500;
return 98.6;
return "Bob Smith";
return true;



Non-void Methods
Examples using return

I A method can return the contents of a variable:
return average;
return name;

I A method can return the result of a mathematical
expression:
return 15 * 7 + 20;
return (first + second) / 2;

I A method can return the result of a boolean expression:
return num != 0 && num < 100;
return name.equals("Harry Potter")



Calling Non-void Methods
Handling the returned value

I Non-void methods must be called from within other
Java statements.

I Since a non-void method always returns a value, then
this value has to be stored in a variable, printed, or
passed to a Java control structure.

Examples of method calls
I A method call can be in an assignment statement:

int num = sum();
double average = calcAverage();
String name = getName();



Calling Non-void Methods
Examples of method calls

I A method call can be within a println statement:
System.out.println("Sum = " + sum());
System.out.println("Name = " + getName());

I A method call can be inside a Java control structure,
such as an if statement, or a looping structure:
if (sum() > 500)
while (!getName().equals("Stop"))

I A method call can even be on the return line of another
method:
return sum() / items;



Arguments

What is an argument?
I An argument is a value that is passed to a method, so

that the method can use that value in its code block.
I An argument is found inside the parentheses that follow a

method name.

int num = squareRoot(16);

I The value 16 is the argument for the method
squareRoot.

I The method calculates the square root of this value, and
assigns it to the variable num.



Arguments

Examples of arguments
I An argument can be a literal value:

calculateArea(81);
place.equals("exit");

I An argument can be a variable:
calculateArea(num);
place.equals(location);

I An argument can be a mathematical expression:
calculateArea(20 + 50 * 3.14);



Arguments

Examples of arguments
I An argument can be a call to another method:

calculateArea(findRadius());

I A method can have 0, 1, or more arguments. Multiple
arguments are separated by commas:
calculateVolume(10, 2, 8);



Parameters

Writing a Method with Parameters
I To add parameters to your own method definitions, you

simply declare one or more variables in the parentheses
that follow the method name.

I These variable declarations need to include a data type
and an identifier name.

public double volume(int r, int h, double pi)
{

return pi * r * r * h;
}



Parameters

Parameter declaration
I The following method average declares three parameters

all of type int, named one, two, and three.

public double average(int one, int two, int three)
{

return (one + two + three) / 3.0;
}

I These parameters are used to store the values of the
three integers that are passed to the method.

I The method uses these parameters to calculate the
average of the three integers, and returns the answer.



Parameters
Parameter scope

I The scope of a parameter is limited to the method that it
is declared in.

I The parameters one and two have method scope. This
means that they are local variables for the method
minimum. They do not exist outside of this method.

public int minimum(int one, int two)
{

if (one < two)
return one;

else
return two;

}



Methods, Arguments and Parameters:
End of Notes


