
The String Class
Creating and Manipulating Text Data

Alwin Tareen



The String Class

I Java does not have a built-in primitive data type for
Strings.

I Instead, the standard Java library has a predefined class
called String.

Instantiating(Creating) a String Object
String awaken = "Good Morning";
System.out.println(awaken);

Strings are immutable
In Java, a String is considered immutable. Once it has been
created, it cannot be altered or changed.



String Concatenation

Joining text
I Java allows you to use the + sign to join two Strings

together.

String first = "choco";
String second = "late";
String candy = first + second; // chocolate

I You can also concatenate a String with a numerical
value.

int total = 58;
System.out.println("The total is: " + total);



String Indexes

Assigning numbers to each letter
String fruit = "watermelon";

I We can assign indexes to each letter of this word in the
following manner:

letter w a t e r m e l o n
index 0 1 2 3 4 5 6 7 8 9

I Notice how the first letter in this word(the w) corresponds
to index 0.

I Therefore, the last letter in this word(the n) is assigned
an index of 9.



Substrings
In Java, you can extract a section from a larger String with
the substring() method.
Substring with 2 parameters: substring(m, n)
Generally, you should regard this method as follows:

I Start with the index of the first letter that you want (m).
I End with the index of the first letter that you don’t

want (n).

letter w a t e r m e l o n
index 0 1 2 3 4 5 6 7 8 9

↑ ↑

String fruit = "watermelon";
String duration = fruit.substring(2, 6); // term



Substrings
One step beyond: substring(m, n)

I Let’s say I wanted to extract the String "berry" from
"strawberry".

I Java will allow you to consider the index that is one step
beyond the end of the String.

letter s t r a w b e r r y
index 0 1 2 3 4 5 6 7 8 9 10

↑ ↑

I The following Java statement is legal:

String flavor = "strawberry";
String piece = flavor.substring(5, 10); // berry



Substrings

Substring with 1 parameter: substring(m)
I This method begins with the letter corresponding to the

index m.
I It then extracts all of the letters up to and including the

end of the String.
I This version behaves as a kind of shortcut.

letter p e p p e r m i n t
index 0 1 2 3 4 5 6 7 8 9

↑

String seasoning = "peppermint";
String herb = seasoning.substring(6); // mint



Determining the length of a String
I The length() method indicates how many characters

there are in a String.

String fruit = "watermelon";
int num = fruit.length();
System.out.println("Number of letters = " + num);

I A common use of the length() method is to use it with
a for loop to iterate through each of the letters in the
String.

for (int i = 0; i < fruit.length(); i++)
{

System.out.println(fruit.substring(i, i+1));
}



Searching within a String

The indexOf(str) method
I This method allows you to search for an individual

character or a substring within another String.
I If the search is successful, then the method returns the

index of the substring.
I If the substring is not found within the String, then the

method returns -1.

String lunch = "cheeseburger";
int position = lunch.indexOf("burg"); // 6
int location = lunch.indexOf("e"); // 2
int section = lunch.indexOf("raw"); // -1



Equality of String Objects
The equals() method

I This method allows you to check if two Strings are
equal.

I Note that you cannot use the == operator to compare
Strings, because Strings are not primitive data types.

String drink = "water";
String beverage = "water";
boolean result = drink.equals(beverage); // true

String soda = "sprite";
String pop = "pepsi";
boolean outcome = soda.equals(pop); // false



Comparing String Objects

The compareTo(str) method
I This method compares each String’s relative position in

the ASCII chart of text symbols.

Digits
Value Symbol

48 0
49 1
50 2
51 3
52 4
53 5

Uppercase
Value Symbol

65 A
66 B
67 C
68 D
69 E
70 F

Lowercase
Value Symbol

97 a
98 b
99 c
100 d
101 e
102 f



Comparing String Objects
I Upon examining the ASCII table, we can see that the

following relation is true:

digits < uppercase letters < lowercase letters

I Consider the following statement:

boolean result = phrase.compareTo(sentence);

I If phrase alphabetically precedes sentence:
→ result contains a negative int.

I If phrase alphabetically follows sentence:
→ result contains a positive int.

I If phrase is alphabetically equal to sentence:
→ result contains zero.



The String Class: End of Notes


