
Conditionals and Looping
Decision making with if statements. Iteration with the

while and for loops

Alwin Tareen

Conditional Statements

The if statement
I The if statement in Java consists of 2 distinct parts: a
condition and a body.

if (condition)
{

body
}

I The (condition) must be enclosed by parentheses,
unlike other programming languages such as Python.

I Omitting the parentheses is a common error.

Conditional Statements

The if statement
I The condition is a boolean expression that evaluates to

either true or false.
I The body is the block of code that will be executed if the

condition is true.
I Note that if the condition evaluates as false, then this

code block will be completely skipped over.

if (age >= 18)
{

System.out.println("You can drive.");
}

The if-else statement
I Java’s if-else statement is used when you want to do

one thing if a condition is true, and another thing if a
condition is false.

I An if-else statement will execute either the if section
or the else section, but never both.

if (condition)
{

body1 // evaluated when condition is true
}
else
{

body2 // evaluated when condition is false
}

An if-else Example

I If the condition is true, then the assignment statement is
executed.

I If the condition is false, then the println statement is
executed. Only one of the statements can be executed.

if (amount <= balance)
{

balance = balance - amount;
}
else
{

System.out.println("Insufficient balance.");
}

The extended if statement
I Java’s extended if statement can be used if we have a

series of if-else statements, and only one of them can
evaluate as true.

if (condition)
{ ... }
else if (other condition)
{ ... }
else
{ ... }

I Generally, it has an else condition at the very end. This
becomes the default choice for the entire structure.

I If all of the other conditions evaluate as false, then this
default else condition has its code block executed.

An extended if Example

if (temp > 100)
{

System.out.println("Stifling heat!");
}
else if (temp > 50)
{

System.out.println("Warm environment.");
}
else
{

System.out.println("Freezing cold!");
}

Relational Operators
I A relational operator tests the relationship between two

values.
I Java has six relational operators:

Java Operator Description
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
!= not equal to

These operators are mathematical in nature:
boolean result = 8 > 5; // result is true

The Equality Operator: ==

I The equality operator(==) is very confusing to most
Java beginners, because it is easy to mix up with the
assignment operator(=).

I The == operator denotes equality testing.

if (age == 65)
{

System.out.println("You can retire.");
}

I In the above example, the age variable is compared to
65, to see if they are equal.

I Note: you can only use == to test primitive data types,
not objects such as Strings.

Logical Operators

I There are three logical operators in Java.

Op. Description Example Result
! not !a true if a is false, and

false if a is true.
&& and a && b true if a and b are both

true, and false otherwise.
|| or a || b true if either a or b are

true, and false otherwise.

I Order of precedence: not, and, or.

Truth Tables

I A logical operation can be described by a truth table
that lists all of the possible combinations of values for the
input variables involved in an expression.

I The following is a two-valued truth table. It shows the
outputs for the && and || operators.

logical and logical or
a b a && b a || b

false false false false
false true false true
true false false true
true true true true

The not Operator: !

I The not operator gives the logical complement of a
boolean value.

I It does not alter the variable upon which it acts.
I The following is the truth table for the not operator:

logical not
a !a

false true
true false

if (!lights)
{

System.out.println("The room is dark.");
}

The and Operator: &&

I The result of a logical and(&&) operation is true if both
operands are true, but false otherwise.

if (chips > 0 && soda > 0)
{

System.out.println("You have snacks.");
}

The or Operator: ||

I The result of a logical or(||) operation is true if one or
the other or both of the operands are true, but false
otherwise.

if (money > 1000 || creditCard == true)
{

System.out.println("You can buy an iPhone.");
}

Compound Logical Conditions

I A condition can be formed by using more than one logical
operator.

I This is known as, “chaining together” the operators.

if (month == 3 || month == 4 || month == 5)
{

System.out.println("It is spring.");
}

I Note that you can’t chain together relational operators.

boolean result = 5 <= 8 < 12; // error

DeMorgan’s Laws

Negating a logical expression
I DeMorgan’s laws allow us to simplify a boolean

expression by distributing the negation operator.
I An interesting outcome is that all or’s are converted to

and’s, and all and’s are converted to or’s.

!(A or B) = !A and !B
!(A and B) = !A or !B

For example, the statement, “I don’t like chocolate or vanilla.”
is exactly the same as, “I do not like chocolate and I do not
like vanilla.”

Short-Circuit Evaluation

Logical efficiency
I The && and || operators are short-circuited.
I This means that if the left-hand operand in an boolean

expression can decide the entire expression’s outcome,
then the right-hand side is not evaluated.

Consider the following example:
boolean a = false;
boolean result = a && (b || c && (p && q) || m);

I result will always evaluate as false, regardless of the
other boolean values.

Short-Circuit Evaluation
Short-circuit evaluation with and: &&
If the left-hand operand is false, then the result of the entire
boolean expression will be false, no matter what the
right-hand operand is.

boolean a = false;
boolean result = a && (p && q); // a is false

Short-circuit evaluation with or: ||
If the left-hand operand is true, then the result of the entire
boolean expression will be true, no matter what the
right-hand operand is.

boolean b = true;
boolean result = b || (p && q); // b is true

The while Loop

The indefinite loop
I Recall that a boolean condition is a statement that

evaluates to either true or false.
I A while loop repeates looping as long as its boolean

condition is true. It is also known as an indefinite loop.
I Java’s while loop has the following structure:

while (boolean condition)
{

code block of statements;
}

The Counter-controlled Loop
Looping a given number of times

I A counter-controlled loop is one that repeats a
predetermined number of times.

I The condition in this loop is controlled by a counter
variable.

I The counter variable keeps track of the number of times
that a loop is executed.

int count = 0;
while (count < 5)
{

System.out.println(count);
count++;

}

The Infinite Loop
Beware the endless loop

I A common mistake is when a programmer forgets to
increment the counter variable within the body of the
while loop.

I If this case occurs, then the boolean condition will always
evaluate as true. It will never become false.

I Therefore, the code block of statements within the while
loop will execute indefinitely.

int count = 0;
while (count < 100)
{

System.out.println("Hi"); // indefinite loop
}

Summing a Sequence of Integers with while

This Java program uses a while statement to sum the
following sequence of integers:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

int count = 1;
int sum = 0;
while (count <= 10)
{

sum += count;
count++;

}
System.out.println(sum);

Incrementing by a Different Amount

I A counter variable can be incremented by a value other
than one.

I For example, the following counter is incremented by 10,
each time through the loop.

int count = 0;
while (count < 100)
{

System.out.println(count);
count += 10;

}

The for Loop

The definite loop
I Counter-controlled loops are so frequently used, that

programming languages have developed a special
structure for them.

I The for statement combines counter initialization,
condition testing, and counter updating into a single
expression.

I It is also known as a definite loop.

for (initialize counter; test counter; update counter)
{

code block of statements;
}

while and for Loop Equivalence
Consider the following while loop:
int count = 0;
while (count < 5)
{

System.out.println("Hello");
count++;

}

This while loop can be equivalently expressed as the following
for loop:
for (int count = 0; count < 5; count++)
{

System.out.println("Hello");
}

Counting Through a Sequence of Integers

I The following for loop counts from 0 to 9.
I The counter variable i is declared as part of the for

loop, therefore it only exists in that code block.
I Attempting to use i outside the for loop would result in

an error.

for (int i = 0; i < 10; i++)
{

System.out.println(i);
}

Summing a Sequence of Integers with for

This Java program uses a for statement to sum the following
sequence of integers:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

int sum = 0;
for (int i = 1; i <= 10; i++)
{

sum += i;
}
System.out.println(sum);

Incrementing by a Different Amount

I The counter variable can be incremented by a value other
than one.

I For example, the following counter is incremented by 10,
each time through the loop.

for (int i = 0; i < 100; i += 10)
{

System.out.println(i);
}

Flowchart representation of a for Loop

Conditionals and Looping:
End of Notes

