
Java Syntax
Variables, Data Types, and Operators

Alwin Tareen



Variable Declaration

What is a variable?
A variable is a named piece of memory that you can use to
store information in a Java program.

int average;

Declaring a variable
A variable declaration consists of two parts: a data type, and
an identifier name.

I data type: int
I identifier name: average



Variable Naming Rules

1. A variable name must begin with a letter(not a number or
symbol).
int total; // Legal
double 2scoops; // Not legal

2. The variable name must be a sequence of letters or digits.
Symbols(@, #, $, %, &, etc.) cannot be used at all.
double good4you; // Legal
boolean work@home; // Not legal

3. The length of a variable name is unlimited.



Variable Assignment
The assignment operator: =
The equals sign is used to assign a value to a variable.

total = 58;

Different from math notation
The assignment operator does not possess the same meaning
as mathematical equality(even though they seem similar).

int distance; // declaration
distance = 42; // assignment

I The assignment occurs from right to left.
I The value on the right is copied into the variable on the
left.



Variable Assignment

Updating a variable
The assignment operator can be used to replace the contents
of a variable with a new value.

int score; // declaration
score = 0; // assignment
score = 3; // update
score = 5; // update

Initializing a variable
Declaring and assigning a value to a variable can be
combined into a single step.

int velocity = 0; // initialize to 0



User Friendly Output

Displaying a variable
When printing out a variable, it is useful to give a small
description, so the user can recognize it.

Printing without a description:
int cost = 21;
System.out.println(cost);

Printing with a description(better):
double price = 19.95;
System.out.println("The price is: " + price);



The Concatenation Operator

Combining a String and a variable
When the plus sign is used in a println() statement with a
String, it concatenates(joins).

int grade = 87;
System.out.println("The grade is: " + grade);

You can also use concatenation with a numerical value:

System.out.println("The price is: " + 19.95);



Primitive Data Types

Data Type Memory Allocation Range of Values
boolean 1 bit true or false
int 4 bytes max value: 231 − 1

min value: −231

double 8 bytes −1.79× 10308 to
+1.79× 10308

The integer data type: int
These are represented by a sequence of binary digits in
memory.

The floating-point data type: double
These are composed of two parts: a mantissa and an
exponent. They are subject to rounding errors.



Arithmetic Operators

Symbol Operation
+ addition
- subtraction
* multiplication
/ integer division

I Both int and double data types can be used with these
operators.

I The multiplication operator takes the form of an asterisk,
and not the symbol ×.

I The / symbol performs integer division, where the
decimal component of the result is discarded.



The Modulus Operator

Determining the remainder: %
The operation a%b produces the remainder, when operand a is
divided by operand b.

I 17%3 → 2
I 23%5 → 3

Determining even or odd numbers
Take any number and perform a modulus with 2.

I If the result is 1 → the number is odd.
I If the result is 0 → the number is even.

Example
15%2 → 1, therefore 15 is an odd number.



Division Behavior

Integer division
If both of the operands are integers, then integer division is
performed, where the decimal component of the result is
discarded.

10/4→ 2

Floating-point division
If either of the operands is a double, then a regular,
calculator-style division is performed.

10.0/4→ 2.5

16/5.0→ 3.2



Operator Precedence

All expressions are solved according to the same order of
operations used in algebra.
int result = 14 + 8 / 2;

You can change the order of evaluation by using parentheses:

int result = (14 + 8) / 2;

After the arithmetic operations are complete, the answer is
stored in the variable on the left-hand side of the assignment
operator.



Precedence Table

Precedence Operator Operation Association
1 () grouping N/A

* multiplication
2 / division left to right

% modulus
3 + addition left to right

- subtraction
4 = assignment right to left



Data Conversion

Converting numbers
In Java, we are allowed to convert from one numerical
primitive data type to another. There are 2 categories of
conversion:

Widening conversion
This is safest, because information is not lost.
int → double

Narrowing conversion
In this scenario, the decimal component of the double
number is discarded. It should be avoided, because
information is lost(in fact, the compiler will issue a warning).
double → int



Type Casting
A type cast is used to convert a variable from one data type to
another. Place the type name in parentheses, in front of the
variable to be converted.

Widening conversion(int → double)
int sum = 8;
double total = 0.0;
total = (double) sum; // total now contains 8.0

Narrowing conversion(double → int)
double money = 84.69;
int dollars = 0;
dollars = (int) money; // dollars now contains 84



Updated Precedence Table

Precedence Operator Operation Association
1 () grouping N/A
2 (int) type cast right to left

(double)
* multiplication

3 / division left to right
% modulus

4 + addition left to right
- subtraction

5 = assignment right to left



Adding or Subtracting 1 from a Variable

Increment operator: ++
This adds 1 to any numerical value.

int count = 5;
count++; // count now contains 6

Decrement operator: --
This subracts 1 from any numerical value.

int total = 5;
total--; // total now contains 4



Compound Assignment Operators

The += operator
Several assignment operators in Java combine a basic
operation with assignment. For example, the += operator can
be used as follows:

int score = 10;
score += 5;

The code above causes the value of score to be increased by
5. The code above is equivalent to the following:
int score = 10;
score = score + 5;



Java’s Compound Assignment Operators

Op. Description Example Equivalence
= assignment x = y x = y
+= addition & assignment x += y x = x + y
-= subtraction & assignment x -= y x = x - y
*= multiplication & assignment x *= y x = x * y
/= division & assignment x /= y x = x / y
%= remainder & assignment x %= y x = x % y



Java Syntax: End of Notes


