
 The scrambling process begins at the first letter of the word and continues from left to right.
 If two consecutive letters consist of an "A" followed by a letter that is not an "A", then the

two letters are swapped in the resulting string.
 Once the letters in two adjacent positions have been swapped, neither of those two positions

can be involved in a future swap.

 The following table shows several examples of words and their scrambled versions.

COMPUTER SCIENCE A

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-2-

COMPUTER SCIENCE A
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total score—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN JAVA.

Notes:
Assume that the classes listed in the appendices have been imported where appropriate.

Unless otherwise noted in the question, assume that parameters in method calls are not null and that methods
are called only when their preconditions are satisfied.

In writing solutions for each question, you may use any of the accessible methods that are listed in classes
defined in that question. Writing significant amounts of code that can be replaced by a call to one of these
methods may not receive full credit.

 1. This question involves reasoning about strings made up of uppercase letters. You will implement two related
methods that appear in the same class (not shown). The first method takes a single string parameter and returns a
scrambled version of that string. The second method takes a list of strings and modifies the list by scrambling
each entry in the list. Any entry that cannot be scrambled is removed from the list.

•
•

•

(a) Write the method scrambleWord, which takes a given word and returns a string that contains a
scrambled version of the word according to the following rules.

word Result returned by
scrambleWord(word)

"TAN" "TNA"

"ABRACADABRA" "BARCADABARA"

"WHOA" "WHOA"

"AARDVARK" "ARADVRAK"

"EGGS" "EGGS"

"A" "A"

"" ""

WRITE YOUR SOLUTION ON THE NEXT PAGE.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-3-

 Complete method scrambleWord below.

 /** Scrambles a given word.
 * @param word the word to be scrambled
 * @return the scrambled word (possibly equal to word)
 * Precondition: word is either an empty string or contains only uppercase letters.
 * Postcondition: the string returned was created from word as follows:
 * - the word was scrambled, beginning at the first letter and continuing from left to right
 * - two consecutive letters consisting of "A" followed by a letter that was not "A" were swapped
 * - letters were swapped at most once
 */
 public static String scrambleWord(String word)

Part (b) begins on page 4.

0 1 2

wordList "TNA" "BARCADABARA" "PAPLE"

0 1 2 3 4

wordList "TAN" "ABRACADABRA" "WHOA" "APPLE" "EGGS"

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-4-

(b) Write the method scrambleOrRemove, which replaces each word in the parameter wordList with
its scrambled version and removes any words that are unchanged after scrambling. The relative ordering of
the entries in wordList remains the same as before the call to scrambleOrRemove.

The following example shows how the contents of wordList would be modified as a result of calling
scrambleOrRemove.

Before the call to scrambleOrRemove:

After the call to scrambleOrRemove:

WRITE YOUR SOLUTION ON THE NEXT PAGE.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-5-

 Assume that scrambleWord is in the same class as scrambleOrRemove and works as specified,
regardless of what you wrote in part (a).

 Complete method scrambleOrRemove below.

 /** Modifies wordList by replacing each word with its scrambled
 * version, removing any words that are unchanged as a result of scrambling.
 * @param wordList the list of words
 * Precondition: wordList contains only non-null objects
 * Postcondition:
 * - all words unchanged by scrambling have been removed from wordList
 * - each of the remaining words has been replaced by its scrambled version
 * - the relative ordering of the entries in wordList is the same as it was
 * before the method was called
 */
 public static void scrambleOrRemove(List<String> wordList)

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

GO ON TO THE NEXT PAGE.
-7-

3. A student in a school is represented by the following class.

public class Student
{

 // There may be instance variables, constructors, and methods that are not shown.
}

 /** Returns the name of this Student. */
 public String getName()
 { /* implementation not shown */ }

 /** Returns the number of times this Student has missed class. */
 public int getAbsenceCount()
 { /* implementation not shown */ }

 The class SeatingChart, shown below, uses a two-dimensional array to represent the seating arrangement
of students in a classroom. The seats in the classroom are in a rectangular arrangement of rows and columns.

public class SeatingChart
{
 /** seats[r][c] represents the Student in row r and column c in the classroom. */
 private Student[][] seats;

 /** Creates a seating chart with the given number of rows and columns from the students in
* studentList. Empty seats in the seating chart are represented by null.
* @param rows the number of rows of seats in the classroom
* @param cols the number of columns of seats in the classroom
* Precondition: rows > 0; cols > 0;

 * rows * cols >= studentList.size()
* Postcondition:
* - Students appear in the seating chart in the same order as they appear

 * in studentList, starting at seats[0][0].
* - seats is filled column by column from studentList, followed by any

 * empty seats (represented by null).
* - studentList is unchanged.

 */
 public SeatingChart(List<Student> studentList,

int rows, int cols)
 { /* to be implemented in part (a) */ }

 /** Removes students who have more than a given number of absences from the
* seating chart, replacing those entries in the seating chart with null
* and returns the number of students removed.
* @param allowedAbsences an integer >= 0
* @return number of students removed from seats
* Postcondition:
* - All students with allowedAbsences or fewer are in their original positions in seat
* - No student in seats has more than allowedAbsences absences.
* - Entries without students contain null.

 */
 public int removeAbsentStudents(int allowedAbsences)
 { /* to be implemented in part (b) */ }

 // There may be instance variables, constructors, and methods that are not shown.
}

s.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-8-

(a) Write the constructor for the SeatingChart class. The constructor initializes the seats instance
variable to a two-dimensional array with the given number of rows and columns. The students in
studentList are copied into the seating chart in the order in which they appear in studentList.
The students are assigned to consecutive locations in the array seats, starting at seats[0][0] and
filling the array column by column. Empty seats in the seating chart are represented by null.

 For example, suppose a variable List<Student> roster contains references to Student objects
in the following order.

"Karen"
3

"Liz"
1

"Paul"
4

"Lester"
1

"Henry"
5

"Renee"
9

"Glen"
2

"Fran"
6

"David"
1

"Danny"
3

 A SeatingChart object created with the call new SeatingChart(roster, 3, 4) would

have seats initialized with the following values.

 0 1 2 3

0

1

2

"Karen"
3

"Lester"
1

"Glen"
2

"Danny"
3

"Liz"
1

"Henry"
5

"Fran"
6

null

"Paul"
4

"Renee"
9

"David"
1

null

WRITE YOUR SOLUTION ON THE NEXT PAGE.

Part (a) continues on page 9.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-9-

 Complete the SeatingChart constructor below.

 /** Creates a seating chart with the given number of rows and columns from the students in
 * studentList. Empty seats in the seating chart are represented by null.
 * @param rows the number of rows of seats in the classroom
 * @param cols the number of columns of seats in the classroom
 * Precondition: rows > 0; cols > 0;
 * rows * cols >= studentList.size()
 * Postcondition:
 * - Students appear in the seating chart in the same order as they appear
 * in studentList, starting at seats[0][0].
 * - seats is filled column by column from studentList, followed by any
 * empty seats (represented by null).
 * - studentList is unchanged.
 */
 public SeatingChart(List<Student> studentList,
 int rows, int cols)

Part (b) begins on page 10.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.

Visit the College Board on the Web: www.collegeboard.org.

 GO ON TO THE NEXT PAGE.
-10-

(b) Write the removeAbsentStudents method, which removes students who have more than a given
number of absences from the seating chart and returns the number of students that were removed. When a
student is removed from the seating chart, a null is placed in the entry for that student in the array
seats. For example, suppose the variable SeatingChart introCS has been created such that the
array seats contains the following entries showing both students and their number of absences.

 0 1 2 3

0

1

2

"Karen"
3

"Lester"
1

"Glen"
2

"Danny"
3

"Liz"
1

"Henry"
5

"Fran"
6

null

"Paul"
4

"Renee"
9

"David"
1

null

 After the call introCS.removeAbsentStudents(4) has executed, the array seats would
contain the following values and the method would return the value 3.

 0 1 2 3

0

1

"Karen"
3

"Lester"
1

"Glen"
2

"Danny"
3

"Liz"
1

null null null

2
"Paul"

4

null "David"
1

null

Class information repeated from the beginning of the question:

public class Student

public String getName()
public int getAbsenceCount()

public class SeatingChart

private Student[][] seats
public SeatingChart(List<Student> studentList,
 int rows, int cols)
public int removeAbsentStudents(int allowedAbsences)

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

GO ON TO THE NEXT PAGE.
-11-

 Complete method removeAbsentStudents below.

 /** Removes students who have more than a given number of absences from the
* seating chart, replacing those entries in the seating chart with null
* and returns the number of students removed.
* @param allowedAbsences an integer >= 0
* @return number of students removed from seats
* Postcondition:
* - All students with allowedAbsences or fewer are in their original positions in seats.
* - No student in seats has more than allowedAbsences absences.
* - Entries without students contain null.

 */
 public int removeAbsentStudents(int allowedAbsences)

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

GO ON TO THE NEXT PAGE.
-12-

4. The menu at a lunch counter includes a variety of sandwiches, salads, and drinks. The menu also allows a
customer to create a "trio," which consists of three menu items: a sandwich, a salad, and a drink. The price

of the trio is the sum of the two highest-priced menu items in the trio; one item with the lowest price is free.

Each menu item has a name and a price. The four types of menu items are represented by the four classes
Sandwich, Salad, Drink, and Trio. All four classes implement the following MenuItem interface.

public interface MenuItem
{

}

 /** @return the name of the menu item */
 String getName();

 /** @return the price of the menu item */
 double getPrice();

The following diagram shows the relationship between the MenuItem interface and the Sandwich,
Salad, Drink, and Trio classes.

For example, assume that the menu includes the following items. The objects listed under each heading are
instances of the class indicated by the heading.

Sandwich Salad Drink

"Cheeseburger" "Spinach Salad" "Orange Soda"

2.75 1.25 1.25

"Club Sandwich" "Coleslaw" "Cappuccino"

2.75 1.25 3.50

Question 4 continues on page 13.

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

2014 AP® COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

© 2014 The College Board.
Visit the College Board on the Web: www.collegeboard.org.

GO ON TO THE NEXT PAGE.
-13-

The menu allows customers to create Trio menu items, each of which includes a sandwich, a salad, and a
drink. The name of the Trio consists of the names of the sandwich, salad, and drink, in that order, each
separated by "/" and followed by a space and then "Trio". The price of the Trio is the sum of the two
highest-priced items in the Trio; one item with the lowest price is free.

A trio consisting of a cheeseburger, spinach salad, and an orange soda would have the name
"Cheeseburger/Spinach Salad/Orange Soda Trio" and a price of $4.00 (the two highest prices
are $2.75 and $1.25). Similarly, a trio consisting of a club sandwich, coleslaw, and a cappuccino would have the
name "Club Sandwich/Coleslaw/Cappuccino Trio" and a price of $6.25 (the two highest prices
are $2.75 and $3.50).

 Write the Trio class that implements the MenuItem interface. Your implementation must include a
constructor that takes three parameters representing a sandwich, salad, and drink. The following code segment
should have the indicated behavior.

Sandwich sandwich;
Salad salad;
Drink drink;
/* Code that initializes sandwich, salad, and drink */

Trio trio = new Trio(sandwich, salad, drink); // Compiles without error

Trio trio1 = new Trio(salad, sandwich, drink); // Compile-time error
Trio trio2 = new Trio(sandwich, salad, salad); // Compile-time error

WRITE YOUR SOLUTION ON THE NEXT PAGE.

