CSE 701: Wireless Networking Seminar

Robust Rate Adaptation for 802.11 Wireless Networks Starsky H.Y. Wong, *et al.*, UCLA

Presented by Alwin Tareen

Department of Computer Science and Engineering University at Buffalo Buffalo, NY 14226, USA

January 25, 2011

Key Points of the RRAA Paper

- Rate Adaptation(RA):
 - Allows for each device to adapt the runtime transmission rate based on the dynamic channel condition
- Several existing RA Algorithms are:

ARF AARF SampleRate

- 5 popular design guidelines used by these RA algorithms are critiqued
- Proposal of a Robust Rate Adaptation Algorithm(RRAA):
 - Uses a short-term loss ratio to guide rate selection
 - Applies an adaptive RTS filter to suppress collision losses
- Experimental analysis confirms RRAA superiority

The IEEE 802.11 WLAN Standard

- Access Points and Clients use 802.11 a/b/g devices
- 802.11 DCF mode: a DATA-ACK exchange is performed between Access Point and Client
- Each device may adapt to the following transmission rate options:

802.11b(2.4GHz):	1, 2, 5.5, 11 Mbps
802.11a(5GHz):	6, 9, 12, 18, 24, 36, 48, 54 Mbps
802.11g(2.4GHz):	1,2,5.5,6,9,11,12,18,24,36,48,54 Mbps

- The goal of rate adaptation is to maximize the transmission throughput at the receiver
- Existing RA algorithms make rate decisions based on ACK, indicating successful DATA packet delivery or transmission failure

Experimental Setup

- Access Points:
 - ► AP uses the Agere 802.11a/b/g chipset, all 3 clients supported
 - It implements the 802.11 MAC in the FPGA firmware
 - H periodically broadcasts packets, acts as a hidden station

Receiving Clients:

- ▶ P1, P2, P3, P4, P5 and R
- Linux 2.6 kernel, CISCO Aironet 802.11a/b/g Adapters

The wireless device driver is MADWiFi

Experimental Methodology

- Static scenario: All devices stationary
 - Evaluates the stability and robustness of the algorithms
 - Can the RA stabilize around an optimal rate?
 - Explores sensitivity to random frame losses
- Mobile scenario: AP stationary, Client in motion
 - Evaluates algorithm responsiveness in adapting to significant channel variations
- Hidden station scenario
 - Assesses how an algorithm performs under collision losses
- Uncontrolled field trial
 - Performed during regular office hours
 - Evaluates how the different RA algorithms perform in realistic situations

Existing RA Algorithms: ARF, AARF and SampleRate

- AutoRate Fallback(ARF):
 - Uses probe packets sent at a higher transmission rate
 - If the packet succeeds, the rate is increased
 - The rate is decreased on 2 consecutive transmission failures
- Adaptive AutoRate Fallback(AARF):
 - Improves the stability of ARF
 - When a probe packet fails, the probing threshold is doubled
- SampleRate:
 - Best algorithm for static settings
 - Transmits at the rate with the smallest transmission time
 - Periodically sends out probe packets to a randomly selected rate

The RA Mechanisms

Estimation of the best transmission rate

- What information can be used in the estimation?
- How should the best transmission rate be estimated?

Physical-layer	direct	SNR or	RBAR, OAR
	estimation	PHY metrics	
Link-layer	indirect	frame	ARF, SampleRate
	estimation	transmission	
Hybrid	inference	both PHY and	HRC
		link-layer	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The RA Mechanisms

- Collection of Link-layer information
- Data-frame approach:
 - Probing: a few data frames are periodically transmitted at a rate different from the current one
- Signaling-frame approach
- Estimation strategies
 - Deterministic pattern: Consecutive frame successes indicate good channel conditions
 - Statistical frame metrics
- Rate adjustment actions
 - Sequential: Increase/decrease the current rate by one level
 - Best rate: Jump multiple levels to a better rate

Guideline 1: Decrease transmission rate upon severe packet loss

Original motivation

- Link condition between sender and receiver deteriorates
- Significant losses occur at the current rate
- Sender adapts by switching to lower rate
- Hidden station scenario
 - A receiver experiences significant packet losses with hidden stations present
 - Decreasing the rate only worsens the collisions
- The RA solution should identify the cause of the packet losses and act accordingly

Guideline 1: Decrease transmission rate upon severe packet loss

Experimental analysis

- Setup: A sender at AP, a receiver at R and a hidden terminal at H
- When H broadcasts its packets at 0.379Mbps, R experiences 60% losses for all algorithms
- The heavy collision losses cause the RA algorithms to reduce their rates to 1Mbps
- If RA is turned off and FixedRate is used at 11Mbps, the throughput improves to 1.46Mbps

	ARF	AARF	SampleRate	FixedRate
Throughput (Mbps)	0.65	0.56	0.58	1.46
Loss Ratio	61%	60%	59%	60%

Guideline 2: Use probe packets to assess possible new rates

Intention

- Probe packets: data frames sent out at a different transmission rate
- If the probe packets are successful, the algorithm will switch to the better rate
- Downsides
 - A successful probe can be misleading, and trigger an incorrect rate increase
 - An unsuccessful probe can incur overly harsh penalties on any future rate adaptations
- A statistically small number of probe packets can dramatically influence the RA algorithms

Guideline 3: Use consecutive transmission successes/losses to increase/decrease rate

- Intention
 - The rate should be changed only when the transmission successes or failures are consecutive
- Experimental analysis
 - AP has RA algorithm and frame retry switched off
 - For each run, manually fix the transmission rate that gives the highest throughput
 - The success/failure event for each packet transmission is recorded in the AP
- Transmission probabilities
 - A statistical analysis reveals that consecutive transmission successes are difficult to consistently achieve
 - Packet losses are randomly distributed, and interfere with deterministic pattern schemes

Guideline 4: Use PHY metrics like SNR to infer new transmission rate

- In theory, physical-layer metrics should lead to an accurate rate estimation
- Practical difficulties
 - Experimental studies show there is no strong correlation between SNR and delivery probability
 - SNR variations make rate estimation highly inaccurate
- Experimental analysis
 - Send back-to-back UDP packets from the AP to the client and sample the SNR value
 - The SNR value can commonly have variations of 5dB between consecutive transmissions
 - The large SNR variation can lead to multiple rate level deviations when adjusting the transmission rate

Guideline 4: Use PHY metrics like SNR to infer new transmission rate

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Guideline 5: Long-term smoothened operation produces best average performance

- Underlying hypothesis
 - Long-term estimation/action will smoothen out the impact of random errors
 - Lead to best average performance
- Practical assessment
 - Smaller sampling periods perform much better than longer ones

- Existing RA algorithms are unable to exploit short-term opportunistic gain in the wireless channel
- Long-term, infrequent rate change decisions can lead to performance penalties

Guideline 5: Long-term smoothened operation produces best average performance

- Experimental analysis
 - Sender at P2 uses the ONOE algorithm in MADWiFi to send packets to the AP
 - The sampling period is varied and the results are tabulated
 - A small sampling period of 100ms produces the best average performance in the long term

Sampling intervals (ms)	5000	1000	500	100
UDP Throughput (Mbps)	14.9	15.3	16.5	17.1

Mobile experiment

- A person carries the 802.11b receiver in a route around the building
- Compare the ARF and SampleRate algorithms
- SampleRate has a smaller average UDP throughput, because it is penalized by delayed rate-change decisions

The Robust Rate Adaptation Algorithm (RRAA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The Robust Rate Adaptation Algorithm (RRAA)

- Maximize the aggregate throughput in the presence of various channel dynamics.
- Design goals:
- Robust against random loss
 - Mild, random channel variations should not affect the stability of the rate and throughput
- Responsive to drastic channel changes
 - Quickly track the rate increase/decrease associated with the channel change
 - Responds properly to severe channel degradation e.g. hidden terminals, microwave ovens, etc.

The Robust Rate Adaptation Algorithm (RRAA)

- Design concepts:
- Short-term loss ratio
 - Assess the channel with a *frame loss ratio* and adapt the transmission rate accordingly
- Adaptive application of the RTS handshake
 - Selectively turns on the RTS/CTS exchange to suppress collision losses
- RRAA Modules:

Loss Estimation | Rate Change | Adaptive RTS Filter

- RRAA adjusts the transmission rate based on:
 - The frame loss ratio
 - Calculated over the previous short-term time window

RRAA: Loss Estimation and Rate Change

The RRAA Algorithm

- Starts with the highest rate
- Selection of a new rate initializes an estimation window of ewnd frames
- ▶ The loss ratio is based on the number of frames lost in *ewnd*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Runtime loss ratio:

$$P = rac{\#LostFrames}{\#TransmittedFrames}$$

RRAA: Loss Estimation and The RRAA-BASIC Algorithm

```
1
   R=highest_rate;
2
   counter=ewnd(R);
3
   while true do
4
      rcv_tx_status(last_frame);
5
      P = update_loss_ratio();
      if( counter == 0 )
6
7
         if (P > PMTL) then R = next_lower_rate();
9
         elseif (P < PORI) then R = next_high_rate();</pre>
10
         counter = ewnd(R);
11
      send(next_frame,R);
12
      counter --:
```

RRAA: Loss Estimation and Rate Change

- A new transmission rate is selected, based on the loss ratio P
- The rate is decreased if:
 - The loss ratio P is larger than the Maximum Tolerable Loss threshold, P_{MTL}

- ▶ The rate is increased if:
 - The loss ratio P is smaller than the Opportunistic Rate Increase threshold, P_{ORI}
- ▶ If the loss ratio P lies between P_{MTL} and P_{ORI}
 - The estimation window keeps sliding forward

RRAA: Loss Estimation and Rate Change

- Calculation of the P_{MTL} threshold
 - R_{-} is the next lowest rate to R
 - ▶ With a loss ratio of P*, the throughput at R is the same as the loss-free throughput at R_

$$P^{*}(R) = 1 - \frac{Throughput(R_{-})}{Throughput(R)} = 1 - \frac{txTime(R)}{txTime(R_{-})}$$

Calculation of the PORI threshold

- $P_{MTL}(R^+)$ is the threshold of the next higher rate
- The loss ratio at R must be small enough for R+ to stabilize

$$P_{ORI} = \frac{P_{MTL}(R^+)}{\beta}$$

RRAA Implementation Parameters

Rate	Critical	P_{ORI}	P_{MTL}	ewnd
(Mbps)	Loss Ratio $(\%)$			
6	N/A	50.00	N/A	6
9	31.45	14.34	39.32	10
12	22.94	18.61	28.68	20
18	29.78	13.25	37.22	20
24	21.20	16.81	26.50	40
36	26.90	11.50	33.63	40
48	18.40	4.70	23.00	40
54	7.52	N/A	9.40	40

RRAA: The Adaptive RTS Filter

- Selectively turn on the RTS/CTS exchange to suppress collison losses
- When collision losses are severe, more frames are sent with RTS on
- During periods of mild or absent collision losses, use of the RTS/CTS exchange is minimized

RRAA Performance Evaluation: UDP 802.11a Static

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

RRAA Performance Evaluation: TCP 802.11a Static

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

RRAA Performance Evaluation: 802.11a Rate Distribution

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

RRAA Performance Evaluation: UDP 802.11b Static

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

RRAA Performance Evaluation

▶ 802.11a

- The RRAA-BASIC algorithm outperforms the other RA algorithms, in both UDP and TCP
- RRAA-BASIC transmits 79% of its packets at 24Mbps
- ► The others transmit only 59%~66% of their packets at this rate
- RRAA-BASIC only reduces its transmission rate when its loss ratio threshold has been reached
- This proves RRAA-BASIC is more robust to channel losses
- ▶ 802.11b
 - RRAA achieves 0.3%~48.2% throughput gain compared to the other algorithms

RRAA Performance Evaluation: Mobile Client

E ୭९୯

RRAA Performance Evaluation: Hidden Terminals

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

RRAA Performance Evaluation: Field Trials

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

RRAA Performance Evaluation

- Mobile Client
 - This scenario gauges the responsiveness of the RA algorithms
 - RRAA provides throughput improvements of 10%~27.6%
- Hidden Terminals
 - Evaluates the ability of the algorithm to quickly infer collision losses and adjust the rate accordingly
 - RRAA provides throughput gains of 101% and 74% due to its adaptive RTS filter mechanism
- Field Trials
 - Conducted to understand how the RA algorithms perform under realistic scenarios
 - Both static and mobile settings were tested in an busy office setting for a duration of 6 hours

 RRAA achieves throughput gains of 15.3% for static and 142.7% for mobile

Conclusions

- Rate adaptation offers an effective means to facilitate system throughput improvement in 802.11
- Five common design guidelines were critiqued
- A new Robust Rate Adapatation Algorithm(RRAA) was proposed
- Key insight: RA algorithms must infer different loss behaviors and adapt accordingly
- ▶ RRAA was compared with ARF, AARF and SampleRate
- Experimental analysis showed the superiority of RRAA over the other RA algorithms